Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Cell Genom ; : 100603, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38955188

ABSTRACT

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.

2.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915553

ABSTRACT

Endogenous U small nuclear RNAs (U snRNAs) form RNA-protein complexes responsible for eukaryotic processing of pre-mRNA into mature mRNA. Previous studies have demonstrated the utility of guide-programmable U snRNAs in targeted exon inclusion and exclusion. We investigated whether snRNAs can also enhance conversion of RNA bases over state-of-the-art RNA targeting technologies in human cells. When compared to adenosine deaminase acting on RNA (ADAR)-recruiting circular RNAs, we find that guided A>I snRNAs consistently increase adenosine-to-inosine editing efficiency for genes with higher exon counts, perturb substantially fewer genes in the transcriptome, and localize more persistently to the nucleus where ADAR is expressed. A>I snRNAs can also edit pre-mRNA 3' splice sites to promote splicing changes. Finally, snRNA fusions to H/ACA box snoRNAs (U>Ψ snRNAs) increase targeted RNA pseudouridylation efficiency. Altogether, our results advance the protein-free RNA base conversion toolbox and enhance minimally invasive RNA targeting technologies to treat genetic diseases.

3.
Genome Res ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906680

ABSTRACT

Transcription and translation are intertwined processes where mRNA isoforms are crucial intermediaries. However, methodological limitations in analyzing translation at the mRNA isoform level have left gaps in our understanding of critical biological processes. To address these gaps, we developed an integrated computational and experimental framework called long-read Ribo-STAMP (LR-Ribo-STAMP) that capitalizes on advancements in long-read sequencing and RNA-base editing-mediated technologies to simultaneously profile translation and transcription at both gene and mRNA isoform levels. We also developed the EditsC metric to quantify editing and leverage the single-molecule, full-length transcript information provided by long-read sequencing. Here, we report concordance between gene-level translation profiles obtained with long-read and short-read Ribo-STAMP. We show that LR-Ribo-STAMP successfully profiles translation of mRNA isoforms and links regulatory features, such as upstream open reading frames (uORFs), to translation measurements. We apply LR-Ribo-STAMP to discovering translational differences at both gene and isoform levels in a triple-negative breast cancer cell line under normoxia and hypoxia and find that LR-Ribo-STAMP effectively delineates orthogonal transcriptional and translation shifts between conditions. We also discover regulatory elements that distinguish translational differences at the isoform level. We highlight GRK6, where hypoxia is observed to increase expression and translation of a shorter mRNA isoform, giving rise to a truncated protein without the AGC Kinase domain. Overall, LR-Ribo-STAMP is an important advance in our repertoire of methods that measure mRNA translation with isoform sensitivity.

4.
Genome Biol ; 25(1): 140, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38807229

ABSTRACT

RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.


Subject(s)
RNA-Binding Proteins , RNA-Binding Proteins/metabolism , Binding Sites , Exoribonucleases/metabolism , Humans , RNA/metabolism , Animals , Protein Binding
5.
Neuron ; 112(13): 2157-2176.e12, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38697111

ABSTRACT

Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.


Subject(s)
Brain , Mice, Knockout , Neural Stem Cells , Nonsense Mediated mRNA Decay , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice , Brain/metabolism , Neural Stem Cells/metabolism , Nonsense Mediated mRNA Decay/genetics , Epistasis, Genetic , Microcephaly/genetics , Cell Cycle/physiology , Cell Cycle/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
6.
STAR Protoc ; 5(2): 103040, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38669139

ABSTRACT

Here, we present a protocol for using Skipper, a pipeline designed to process crosslinking and immunoprecipitation (CLIP) data into annotated binding sites. We describe steps for partitioning annotated transcript regions and fitting data to a beta-binomial model to call windows of enriched binding. From raw CLIP data, we detail how users can map reproducible RNA-binding sites to call enriched windows and perform downstream analysis. This protocol supports optional customizations for different use cases. For complete details on the use and execution of this protocol, please refer to Boyle et al.1.


Subject(s)
Immunoprecipitation , Binding Sites , Immunoprecipitation/methods , Humans , Software , Cross-Linking Reagents/chemistry , RNA/metabolism , RNA/genetics
7.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585842

ABSTRACT

Tissue-resident memory CD8 T cells (TRM) kill infected cells and recruit additional immune cells to limit pathogen invasion at barrier sites. Small intestinal (SI) TRM cells consist of distinct subpopulations with higher expression of effector molecules or greater memory potential. We hypothesized that occupancy of diverse anatomical niches imprints these distinct TRM transcriptional programs. We leveraged human samples and a murine model of acute systemic viral infection to profile the location and transcriptome of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. TRM populations were spatially segregated: with more effector- and memory-like TRM preferentially localized at the villus tip or crypt, respectively. Modeling ligand-receptor activity revealed patterns of key cellular interactions and cytokine signaling pathways that initiate and maintain TRM differentiation and functional diversity, including different TGFß sources. Alterations in the cellular networks induced by loss of TGFßRII expression revealed a model consistent with TGFß promoting progressive TRM maturation towards the villus tip. Ultimately, we have developed a framework for the study of immune cell interactions with the spectrum of tissue cell types, revealing that T cell location and functional state are fundamentally intertwined.

8.
Genome Biol ; 25(1): 82, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38566187

ABSTRACT

The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell-cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.


Subject(s)
Ecosystem , Propanolamines , Gene Expression Profiling , Cell Communication , Single-Cell Analysis , Transcriptome
9.
Nucleic Acids Res ; 52(8): 4440-4455, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554115

ABSTRACT

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.


Subject(s)
Bacteriophages , RNA-Binding Proteins , Bacteriophages/physiology , Cell Nucleus/metabolism , CRISPR-Cas Systems , Genome, Viral , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Assembly
10.
iScience ; 27(4): 109251, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38495826

ABSTRACT

The RNA-binding protein PARP13 is a primary factor in the innate antiviral response, which suppresses translation and drives decay of bound viral and host RNA. PARP13 interacts with many proteins encoded by interferon-stimulated genes (ISG) to activate antiviral pathways including co-translational addition of ISG15, or ISGylation. We performed enhanced crosslinking immunoprecipitation (eCLIP) and RNA-seq in human cells to investigate PARP13's role in transcriptome regulation for both basal and antiviral states. We find that the antiviral response shifts PARP13 target localization, but not its binding preferences, and that PARP13 supports the expression of ISGylation-related genes, including PARP13's cofactor, TRIM25. PARP13 associates with TRIM25 via RNA-protein interactions, and we elucidate a transcriptome-wide periodicity of PARP13 binding around TRIM25. Taken together, our study implicates PARP13 in creating and maintaining a cellular environment poised for an antiviral response through limiting PARP13 translation, regulating access to distinct mRNA pools, and elevating ISGylation machinery expression.

12.
RNA ; 30(3): 223-239, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38164626

ABSTRACT

Mitochondria-associated RNA-binding proteins (RBPs) have emerged as key contributors to mitochondrial biogenesis and homeostasis. With few examples known, we set out to identify RBPs that regulate nuclear-encoded mitochondrial mRNAs (NEMmRNAs). Our systematic analysis of RNA targets of 150 RBPs identified RBPs with a preference for binding NEMmRNAs, including LARP4, a La RBP family member. We show that LARP4's targets are particularly enriched in mRNAs that encode respiratory chain complex proteins (RCCPs) and mitochondrial ribosome proteins (MRPs) across multiple human cell lines. Through quantitative proteomics, we demonstrate that depletion of LARP4 leads to a significant reduction in RCCP and MRP protein levels. Furthermore, we show that LARP4 depletion reduces mitochondrial function, and that LARP4 re-expression rescues this phenotype. Our findings shed light on a novel function for LARP4 as an RBP that binds to and positively regulates NEMmRNAs to promote mitochondrial respiratory function.


Subject(s)
Mitochondria , RNA-Binding Proteins , Humans , Cell Line , Mitochondria/genetics , Mitochondria/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
Nat Commun ; 15(1): 875, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287010

ABSTRACT

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.


Subject(s)
RNA-Binding Proteins , RNA , RNA/metabolism , Binding Sites/genetics , RNA-Binding Proteins/metabolism , RNA Processing, Post-Transcriptional
14.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168984

ABSTRACT

RNA-binding proteins (RBPs) modulate alternative splicing outcomes to determine isoform expression and cellular survival. To identify RBPs that directly drive alternative exon inclusion, we developed tethered function luciferase-based splicing reporters that provide rapid, scalable and robust readouts of exon inclusion changes and used these to evaluate 718 human RBPs. We performed enhanced cross-linking immunoprecipitation, RNA sequencing and affinity purification-mass spectrometry to investigate a subset of candidates with no prior association with splicing. Integrative analysis of these assays indicates surprising roles for TRNAU1AP, SCAF8 and RTCA in the modulation of hundreds of endogenous splicing events. We also leveraged our tethering assays and top candidates to identify potent and compact exon inclusion activation domains for splicing modulation applications. Using these identified domains, we engineered programmable fusion proteins that outperform current artificial splicing factors at manipulating inclusion of reporter and endogenous exons. This tethering approach characterizes the ability of RBPs to induce exon inclusion and yields new molecular parts for programmable splicing control.

15.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-37745562

ABSTRACT

Circular RNAs (circRNAs) represent a class of widespread endogenous RNAs that regulate gene expression and thereby influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Specifically, we use temporal depletion of circHIPK3 or specific RNA binding proteins (RBPs) and identify several perturbed genes by RNA sequencing analyses. Using expression-coupled motif analyses of mRNA expression data from various knockdown experiments, we identify an 11-mer motif within circHIPK3, which is also enriched in genes that become downregulated upon circHIPK3 depletion. By mining eCLIP datasets, we find that the 11-mer motif constitutes a strong binding site for IGF2BP2 and validate this circHIPK3-IGF2BP2 interaction experimentally using RNA-immunoprecipitation and competition assays in bladder cancer cell lines. Our results suggest that circHIPK3 and IGF2BP2 mRNA targets compete for binding. Since the identified 11-mer motif found in circHIPK3 is enriched in upregulated genes following IGF2BP2 knockdown, and since IGF2BP2 depletion conversely globally antagonizes the effect of circHIPK3 knockdown on target genes, our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and thereby STAT3 mRNA levels. However, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Finally, we show that circHIPK3 expression correlates with overall survival of patients with bladder cancer. Our results are consistent with a model where relatively few cellular circHIPK3 molecules function as inducers of IGF2BP2 condensation thereby regulating STAT3 and other key factors for cell proliferation and potentially cancer progression.

16.
Curr Opin Biotechnol ; 85: 103048, 2024 02.
Article in English | MEDLINE | ID: mdl-38142648

ABSTRACT

Complex networks of cell-cell interactions (CCIs) within the tumor microenvironment (TME) play a crucial role in cancer persistence. These communication axes represent prime targets for therapeutic intervention, but our incomplete understanding of the cellular heterogeneity and interacting partners within the TME remains a stubborn barrier to complete drug responses. This review outlines recent advances in the study of CCIs that leverage single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) technologies that can clarify TME dynamics. We anticipate that these strategies will promote discovery of CCIs critical to the tumor-immune interface and will, by extension, expand the repertoire of druggable tumor biomarkers.


Subject(s)
Biomedical Research , Tumor Microenvironment , Cell Communication , Communication , Biomarkers , Single-Cell Analysis
17.
PLoS One ; 18(11): e0293322, 2023.
Article in English | MEDLINE | ID: mdl-37917746

ABSTRACT

Disparities for women and minorities in science, technology, engineering, and math (STEM) careers have continued even amidst mounting evidence for the superior performance of diverse workforces. In response, we launched the Diversity and Science Lecture series, a cross-institutional platform where junior life scientists present their research and comment on diversity, equity, and inclusion in STEM. We characterize speaker representation from 79 profiles and investigate topic noteworthiness via quantitative content analysis of talk transcripts. Nearly every speaker discussed interpersonal support, and three-fifths of speakers commented on race or ethnicity. Other topics, such as sexual and gender minority identity, were less frequently addressed but highly salient to the speakers who mentioned them. We found that significantly co-occurring topics reflected not only conceptual similarity, such as terms for racial identities, but also intersectional significance, such as identifying as a Latina/Hispanic woman or Asian immigrant, and interactions between concerns and identities, including the heightened value of friendship to the LGBTQ community, which we reproduce using transcripts from an independent seminar series. Our approach to scholar profiles and talk transcripts serves as an example for transmuting hundreds of hours of scholarly discourse into rich datasets that can power computational audits of speaker diversity and illuminate speakers' personal and professional priorities.


Subject(s)
Diversity, Equity, Inclusion , Ethnicity , Female , Humans , Minority Groups , Technology
18.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873158

ABSTRACT

Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.

19.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790334

ABSTRACT

Large-genome bacteriophages (jumbo phages) of the Chimalliviridae family assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and CRISPR/Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d halts infections at an early stage. Taken together, our data suggest that the conserved ChmC protein acts as a chaperone for phage mRNAs, potentially stabilizing these mRNAs and driving their translocation through the nuclear shell to promote translation and infection progression.

20.
BMC Bioinformatics ; 24(1): 370, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784060

ABSTRACT

BACKGROUND: Fusion of RNA-binding proteins (RBPs) to RNA base-editing enzymes (such as APOBEC1 or ADAR) has emerged as a powerful tool for the discovery of RBP binding sites. However, current methods that analyze sequencing data from RNA-base editing experiments are vulnerable to false positives due to off-target editing, genetic variation and sequencing errors. RESULTS: We present FLagging Areas of RNA-editing Enrichment (FLARE), a Snakemake-based pipeline that builds on the outputs of the SAILOR edit site discovery tool to identify regions statistically enriched for RNA editing. FLARE can be configured to analyze any type of RNA editing, including C to U and A to I. We applied FLARE to C-to-U editing data from a RBFOX2-APOBEC1 STAMP experiment, to show that our approach attains high specificity for detecting RBFOX2 binding sites. We also applied FLARE to detect regions of exogenously introduced as well as endogenous A-to-I editing. CONCLUSIONS: FLARE is a fast and flexible workflow that identifies significantly edited regions from RNA-seq data. The FLARE codebase is available at https://github.com/YeoLab/FLARE .


Subject(s)
RNA Editing , RNA , Workflow , RNA-Seq , Binding Sites , APOBEC-1 Deaminase
SELECTION OF CITATIONS
SEARCH DETAIL
...