Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0302506, 2024.
Article in English | MEDLINE | ID: mdl-38843263

ABSTRACT

We present the chromosome-scale genome assembly of the allopolyploid root-knot nematode Meloidogyne javanica. We show that the M. javanica genome is predominantly allotetraploid, comprising two subgenomes, A and B, that most likely originated from hybridisation of two ancestral parental species. The assembly was annotated using full-length non-chimeric transcripts, comparison to reference databases, and ab initio prediction techniques, and the subgenomes were phased using ancestral k-mer spectral analysis. Subgenome B appears to show fission of chromosomal contigs, and while there is substantial synteny between subgenomes, we also identified regions lacking synteny that may have diverged in the ancestral genomes prior to or following hybridisation. This annotated and phased genome assembly forms a significant resource for understanding the origins and genetics of these globally important plant pathogens.


Subject(s)
Genome, Helminth , Tylenchoidea , Animals , Tylenchoidea/genetics , Plant Roots/parasitology , Plant Roots/genetics , Polyploidy , Chromosomes/genetics , Synteny , Reproduction, Asexual/genetics , Phylogeny
2.
Proc Natl Acad Sci U S A ; 120(29): e2304612120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428936

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) are highly evolved obligate parasites threatening global food security. These parasites have a remarkable ability to establish elaborate feeding sites in roots, which are their only source of nutrients throughout their life cycle. A wide range of nematode effectors have been implicated in modulation of host pathways for defense suppression and/or feeding site development. Plants produce a diverse array of peptide hormones including PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides, which promote root growth via cell expansion and proliferation. A sulfated PSY-like peptide RaxX (required for activation of XA21 mediated immunity X) produced by the biotrophic bacterial pathogen (Xanthomonas oryzae pv. oryzae) has been previously shown to contribute to bacterial virulence. Here, we report the identification of genes from root-knot nematodes predicted to encode PSY-like peptides (MigPSYs) with high sequence similarity to both bacterial RaxX and plant PSYs. Synthetic sulfated peptides corresponding to predicted MigPSYs stimulate root growth in Arabidopsis. MigPSY transcript levels are highest early in the infection cycle. Downregulation of MigPSY gene expression reduces root galling and egg production, suggesting that the MigPSYs serve as nematode virulence factors. Together, these results indicate that nematodes and bacteria exploit similar sulfated peptides to hijack plant developmental signaling pathways to facilitate parasitism.


Subject(s)
Arabidopsis , Nematoda , Parasites , Tylenchoidea , Animals , Plants , Peptides , Signal Transduction , Tyrosine , Plant Diseases/microbiology , Tylenchoidea/genetics , Plant Roots
4.
New Phytol ; 218(2): 646-660, 2018 04.
Article in English | MEDLINE | ID: mdl-29464725

ABSTRACT

Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.


Subject(s)
Cyclopentanes/pharmacology , Gibberellins/pharmacology , Oryza/immunology , Oryza/parasitology , Oxylipins/pharmacology , Tylenchoidea/physiology , Animals , Biological Transport/drug effects , Disease Susceptibility , Indoleacetic Acids/metabolism , Models, Biological , Oryza/drug effects , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Proteins/metabolism , Plant Shoots/drug effects , Plant Tumors/parasitology , Tylenchoidea/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...