Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Neurosci Bull ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158824

ABSTRACT

Sleep deprivation has been shown to exacerbate pain sensitivity and may contribute to the onset of chronic pain, yet the precise neural mechanisms underlying this association remain elusive. In our study, we explored the contribution of cholinergic neurons within the medial habenula (MHb) to hyperalgesia induced by sleep deprivation in rats. Our findings indicate that the activity of MHb cholinergic neurons diminishes during sleep deprivation and that chemogenetic stimulation of these neurons can mitigate the results. Interestingly, we did not find a direct response of MHb cholinergic neurons to pain stimulation. Further investigation identified the interpeduncular nucleus (IPN) and the paraventricular nucleus of the thalamus (PVT) as key players in the pro-nociceptive effect of sleep deprivation. Stimulating the pathways connecting the MHb to the IPN and PVT alleviated the hyperalgesia. These results underscore the important role of MHb cholinergic neurons in modulating pain sensitivity linked to sleep deprivation, highlighting potential neural targets for mitigating sleep deprivation-induced hyperalgesia.

2.
Theranostics ; 14(11): 4462-4480, 2024.
Article in English | MEDLINE | ID: mdl-39113806

ABSTRACT

Rationale: Cardiomyocytes (CMs) undergo dramatic structural and functional changes in postnatal maturation; however, the regulatory mechanisms remain greatly unclear. Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is an essential sarcomere component maintaining Z-disc stability. Deletion of mouse Cypher and mutation in human ZASP result in dilated cardiomyopathy (DCM). Whether Cypher/ZASP participates in CM maturation and thereby affects cardiac function has not been answered. Methods: Immunofluorescence, transmission electron microscopy, real-time quantitative PCR, and Western blot were utilized to identify the role of Cypher in CM maturation. Subsequently, RNA sequencing and bioinformatics analysis predicted serum response factor (SRF) as the key regulator. Rescue experiments were conducted using adenovirus or adeno-associated viruses encoding SRF, both in vitro and in vivo. The molecular mechanisms were elucidated through G-actin/F-actin fractionation, nuclear-cytoplasmic extraction, actin disassembly assays, and co-sedimentation assays. Results: Cypher deletion led to impaired sarcomere isoform switch and morphological abnormalities in mitochondria, transverse-tubules, and intercalated discs. RNA-sequencing analysis revealed significant dysregulation of crucial genes related to sarcomere assembly, mitochondrial metabolism, and electrophysiology in the absence of Cypher. Furthermore, SRF was predicted as key transcription factor mediating the transcriptional differences. Subsequent rescue experiments showed that SRF re-expression during the critical postnatal period effectively rectified CM maturation defects and notably improved cardiac function in Cypher-depleted mice. Mechanistically, Cypher deficiency resulted in the destabilization of F-actin and a notable increase in G-actin levels, thereby impeding the nuclear localisation of myocardin-related transcription factor A (MRTFA) and subsequently initiating SRF transcription. Conclusion: Cypher/ZASP plays a crucial role in CM maturation through actin-mediated MRTFA-SRF signalling. The linkage between CM maturation abnormalities and the late-onset of DCM is suggested, providing further insights into the pathogenesis of DCM and potential treatment strategies.


Subject(s)
Actins , Cardiomyopathy, Dilated , Myocytes, Cardiac , Serum Response Factor , Signal Transduction , Trans-Activators , Animals , Myocytes, Cardiac/metabolism , Serum Response Factor/metabolism , Serum Response Factor/genetics , Mice , Actins/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Sarcomeres/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Humans , Mice, Knockout
3.
Nano Lett ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145607

ABSTRACT

An altermagnet exhibits many novel physical phenomena because of its intrinsic antiferromagnetic coupling and natural band spin splitting, which are expected to give rise to new types of magnetic electronic components. In this study, an Fe2Se2O monolayer is proven to be an altermagnet with out-of-plane magnetic anisotropy, and its Néel temperature is determined to be 319 K. The spin splitting of the Fe2Se2O monolayer reaches 860 meV. Moreover, an Fe2Se2O monolayer presents a pair of energy valleys, which can be polarized and reversed by applying uniaxial strains along different directions, resulting in a piezovalley effect. Under the strain, the net magnetization can be induced in the Fe2Se2O monolayer by doping with holes, thereby realizing a piezomagnetic property. Interestingly, noncollinear spin current can be generated by applying an in-plane electric field on an unstrained Fe2Se2O monolayer doped with 0.2 hole/formula unit. These excellent physical properties make the Fe2Se2O monolayer a promising candidate for multifunctional spintronic and valleytronic devices.

4.
Cell Rep Med ; 5(8): 101684, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39128469

ABSTRACT

Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.


Subject(s)
Brain , Homeostasis , Lactic Acid , Pyruvate Kinase , Sirtuin 1 , Sirtuin 1/metabolism , Sirtuin 1/genetics , Animals , Brain/metabolism , Brain/pathology , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mice , Lactic Acid/metabolism , Humans , Acetylation/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/genetics , Disease Models, Animal , Male , Mice, Inbred C57BL , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism , Naphthoquinones/pharmacology
5.
Mol Neurobiol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052184

ABSTRACT

Observational studies have shown gut microbiota changes in sporadic Creutzfeldt-Jakob disease patients, but the causal relationship remains unknown. We aimed to determine any causal links between gut microbiota and this prion disease. Using Mendelian randomization analysis, we examined the causal relationship between gut microbiota composition and sporadic Creutzfeldt-Jakob disease. Data on gut microbiota (N = 18,340) and disease cases (5208) were obtained. Various analysis methods were used, including inverse variance weighted, Mendelian randomization-Egger, weighted median, simple mode, and weighted mode. In addition, MR-PRESSO was used to evaluate horizontal pleiotropy and detect outliers. Pleiotropy and heterogeneity were assessed, and reverse analysis was conducted. Negative associations were found between sporadic Creutzfeldt-Jakob disease and family Defluviitaleaceae, family Ruminococcaceae, genus Butyricicoccus, genus Desulfovibrio, and genus Eubacterium nodatum. Genus Lachnospiraceae UCG010 showed a positive correlation. Reverse analysis indicated genetic associations between the disease and decreased levels of family Peptococcaceae, genus Faecalibacterium, and genus Phascolarctobacterium, as well as increased levels of genus Butyrivibrio. No pleiotropy, heterogeneity, outliers, or weak instrument bias were observed. This study revealed bidirectional causal effects between specific gut microbiota components and sporadic Creutzfeldt-Jakob disease. Certain components demonstrated inhibitory effects on disease pathogenesis, while others were positively associated with the disease. Modulating gut microbiota may provide new insights into prion disease therapies. Further research is needed to clarify mechanisms and explore treatments for sporadic Creutzfeldt-Jakob disease.

6.
ACS Appl Mater Interfaces ; 16(31): 41371-41378, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39046888

ABSTRACT

The emergence of an intrinsic quantum anomalous Hall (QAH) insulator with long-range magnetic order triggers unprecedented prosperity for combining topology and magnetism in low dimensions. Here, based on stacked two-dimensional LiFeTe, we confirm that magnetic coupling and topological electronic states can be simultaneously manipulated by just changing the layer numbers. Monolayer LiFeTe shows intralayer ferrimagnetic coupling, behaving as a QAH insulator with Chern number C = 2. Beyond the monolayer, the odd and even layers of LiFeTe correspond to uncompensated and compensated interlayer antiferromagnets, resulting in unexpected QAH and quantum spin Hall (QSH) states, respectively. Moreover, the spin Chern number is proportional to the stacking layer numbers in even-layer LiFeTe, proving that the spin Hall conductivity can be continuously enhanced by increasing layer numbers. Therefore, the odd-even-layer-dependent QAH and QSH effects found in LiFeTe topological insulators offer new insight into regulating quantum states in two-dimensional topological materials.

7.
BMC Cardiovasc Disord ; 24(1): 340, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970012

ABSTRACT

Atrial flutter, a prevalent cardiac arrhythmia, is primarily characterized by reentrant circuits in the right atrium. However, atypical forms of atrial flutter present distinct challenges in terms of diagnosis and treatment. In this study, we examine three noteworthy clinical cases of atypical atrial flutter, which offer compelling evidence indicating the implication of the lesser-known Septopulmonary Bundle (SPB). This inference is based on the identification of distinct electrocardiographic patterns observed in these patients and their favorable response to catheter ablation, which is a standard treatment for atrial flutter. Remarkably, in each case, targeted ablation at the anterior portion of the left atrial roof effectively terminated the arrhythmia, thus providing further support for the hypothesis of SPB involvement. These insightful observations shed light on the potential significance of the SPB in the etiology of atypical atrial flutter and introduce a promising therapeutic target. We anticipate that this paper will stimulate further exploration into the role of the SPB in atrial flutter and pave the way for the development of targeted ablation strategies.


Subject(s)
Action Potentials , Atrial Flutter , Catheter Ablation , Electrocardiography , Heart Rate , Atrial Flutter/physiopathology , Atrial Flutter/diagnosis , Atrial Flutter/surgery , Atrial Flutter/therapy , Atrial Flutter/etiology , Humans , Male , Treatment Outcome , Middle Aged , Female , Aged , Pericardium/physiopathology , Electrophysiologic Techniques, Cardiac
8.
Int J Food Microbiol ; 423: 110831, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39083880

ABSTRACT

In this study, a multi-scale attention transformer (MSAT) was coupled with hyperspectral imaging for classifying peanut kernels contaminated with diverse Aspergillus flavus fungi. The results underscored that the MSAT significantly outperformed classic deep learning models, due to its sophisticated multi-scale attention mechanism which enhanced its classification capabilities. The multi-scale attention mechanism was utilized by employing several multi-head attention layers to focus on both fine-scale and broad-scale features. It also integrated a series of scale processing layers to capture features at different resolutions and incorporated a self-attention mechanism to integrate information across different levels. The MSAT model achieved outstanding performance in different classification tasks, particularly in distinguishing healthy peanut kernels from those contaminated with aflatoxigenic fungi, with test accuracy achieving 98.42±0.22%. However, it faced challenges in differentiating peanut kernels contaminated with aflatoxigenic fungi from those with non-aflatoxigenic contamination. Visualization of attention weights explicitly revealed that the MSAT model's multi-scale attention mechanism progressively refined its focus from broad spatial-spectral features to more specialized signatures. Overall, the MSAT model's advanced processing capabilities marked a notable advancement in the field of food quality safety, offering a robust and reliable tool for the rapid and accurate detection of Aspergillus flavus contaminations in food.


Subject(s)
Arachis , Aspergillus flavus , Food Contamination , Food Microbiology , Aspergillus flavus/isolation & purification , Arachis/microbiology , Food Contamination/analysis , Food Safety , Aflatoxins/analysis , Hyperspectral Imaging/methods
9.
Bioresour Technol ; 406: 131008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897547

ABSTRACT

This study investigated the nutrient removal and microbial community succession in moving bed biofilm reactor under stable and three levels of influent carbon/nitrogen (C/N) ratio fluctuation (± 10%, ± 20%, and ± 30%). Under the conditions of influent C/N ratio fluctuation, the removal efficiency of COD and PO43--P decreased 4.7-6.4% and 3.7-12.9%, respectively, while the nitrogen removal was almost unaffected. A sharp decrease in the content of culturable functional bacteria related to nitrogen and phosphorus removal including nitrite-oxidizing bacteria (NOB), aerobic denitrifying bacteria (DNB), and polyphosphate-accumulating organisms (PAOs) from the carrier biofilm was observed. Sequencing analysis revealed that the abundance of Candidatus Competibacter increased 10.3-25.9% and became the dominant genus responsible for denitrification, potentially indicating that nitrate was removed via endogenous denitrification under the influent C/N ratio fluctuation. The above results will provide basic data for the nutrient removal in decentralized wastewater treatment under highly variable influent conditions.


Subject(s)
Bacteria , Biofilms , Bioreactors , Carbon , Nitrogen , Nitrogen/metabolism , Bioreactors/microbiology , Carbon/metabolism , Bacteria/metabolism , Bacteria/genetics , Denitrification , Phosphorus , Water Purification/methods , Nutrients/metabolism , Biological Oxygen Demand Analysis , Wastewater/microbiology
10.
Int J Biol Macromol ; 273(Pt 2): 133133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876233

ABSTRACT

This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.


Subject(s)
Anthocyanins , Fruit and Vegetable Juices , Morus , Morus/chemistry , Anthocyanins/chemistry , Fruit and Vegetable Juices/analysis , Antioxidants/chemistry
12.
Int J Lab Hematol ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38826023

ABSTRACT

INTRODUCTION: The purpose of this study was to investigate the effects and potential mechanisms of ferroptosis-related gene heat shock protein beta-1 (HSPB1) on acute myeloid leukemia (AML). METHODS: The RNA-seq and clinical data of AML samples were obtained from the Genomic Data Commons database, and the FerrDb database was used to screen the marker, drive and suppressor of ferroptosis. Besides, DESeq2 was applied for differential expression analysis on AML samples and screening for differentially expressed genes (DEGs). The screened DEGs were subjected to the intersection analysis with ferroptosis-related genes to identify the ferroptosis-related DEGs. Next, the functional pathways of ferroptosis-related DEGs were further be discussed by Gene Ontology as well as Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs. Additionally, lasso regression analysis was employed to determine the differential genes related to prognosis in patients with AML and the survival analysis was performed. Subsequently, quantitative real-time polymerase chain reaction and western blot assay were applied to detect the mRNA and protein expression levels of HSPB1 in normal/AML bone marrow tissues and human normal (HS-5)/AML (HL-60) bone marrow cells, respectively. Furthermore, HSPB1 was knocked down to assess the expression changes of glutathione peroxidase 4 and acyl-CoA synthetase long-chain family member 4. Ultimately, the viability and oxidative stress levels of HL-60 were analyzed by Cell Counting Kit-8 and biochemical detection. RESULTS: A total of 4986 DEGs were identified in AML samples, with 3324 up-regulated and 1662 down-regulated. The enrichment analysis illustrated that ferroptosis-related DEGs were significantly enriched in response to metal irons, oxidative stress, and other pathways. After lasso regression analysis, 17 feature genes related to the prognosis of patients with AML were obtained, with HSPB1 exhibiting a significant correlation. The reliability of our models was verified by Cox regression analysis and survival analysis of the hazard model. Furthermore, the outcomes of quantitative real-time polymerase chain reaction and western blot showed that mRNA and protein expression levels of HSPB1 were significantly increased in the AML Group and HL-60 cells. The knockdown of HSPB1 in HL-60 cells reduced the protein level of glutathione peroxidase 4, increased the protein level of acyl-CoA synthetase long-chain family member 4, decreased the cell viability, and aggravated oxidative stress. CONCLUSION: Ferroptosis-related gene HSPB1 is highly expressed in patients with AML. In addition, HSPB1 may be involved in the occurrence and development of AML by regulating oxidative stress and ferroptosis-related pathways. This study provides new clues for further understanding of AML molecular mechanisms. Also, HSPB1 is expected to be a potential therapeutic target for AML in the future.

13.
J Psychosom Res ; 183: 111463, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823370

ABSTRACT

OBJECTIVE: The relationship between sedentary behaviors and functional outcomes of acute ischemic stroke (AIS) has been previously reported. However, it remains unclear whether sedentary behaviors are associated with mental health outcomes in AIS patients. Therefore, the objective of this study was to investigate the mental health outcomes in patients with minor AIS one year after stroke onset. METHODS: This cross-sectional study recruited 1230 patients with minor AIS (NIHSS ≤ 5) from three hospitals in China. One year after discharge, patients were interviewed using face-to-face questionnaires, including the PHQ-9, GAD-7, and ISI, to assess symptoms of depression, anxiety, and insomnia, respectively. Participants were categorized into the long sedentary time group and the short sedentary time group based on the median sedentary time of all participants. The associations between leisure sedentary time and mental health outcomes were investigated. RESULTS: Participants with a long leisure sedentary time had higher PHQ-9, GAD-7, and ISI scores than those with a short sedentary time. Longer sedentary time was associated with an increased risk of experiencing symptoms of major depression (RR, 95% CI: 1.79, 1.47 to 2.18), anxiety (RR, 95% CI: 3.28, 2.08 to 5.18), and insomnia (RR, 95% CI: 2.58, 2.03 to 3.28) one year after a minor AIS. CONCLUSION: Excessive sedentary time is associated with long-term mental health conditions after stroke. Therefore, reducing the sedentary time might be helpful for preventing poststroke depression, anxiety, and insomnia.


Subject(s)
Anxiety , Ischemic Stroke , Sedentary Behavior , Humans , Male , Female , Middle Aged , Ischemic Stroke/psychology , Ischemic Stroke/epidemiology , Cross-Sectional Studies , Aged , Anxiety/psychology , Mental Health , Sleep Initiation and Maintenance Disorders/psychology , Sleep Initiation and Maintenance Disorders/epidemiology , Depression/psychology , China/epidemiology , Adult
14.
Tob Induc Dis ; 222024.
Article in English | MEDLINE | ID: mdl-38860152

ABSTRACT

INTRODUCTION: This study examined the prevalence of tobacco exposure and drinking and ascertained the relationships between tobacco exposure, alcohol drinking, concurrent smoking and drinking, and hypertension in rural southwestern China. METHODS: Data were collected from a cross-sectional health interview and examination survey, which included 7572 adults aged ≥35 years, in rural China. Participant demographic characteristics, smoking habits, exposure to secondhand smoke (SHS), and alcohol drinking habits were obtained using a standard questionnaire. Blood pressure (BP), height, weight, and waist circumference were measured for each participant. RESULTS: The overall prevalence of smoking, SHS exposure, drinking, concurrent smoking and drinking, concurrent exposure to SHS and drinking, and hypertension was 37.7%, 27.4%, 16.2%, 12.6%, 1.6%, and 41.3%, respectively. Males had a significantly higher prevalence of smoking (74.1% vs 2.2%, p<0.01), drinking (31.1% vs 1.7%, p<0.01), and concurrent smoking and drinking than females (25.3% vs 0.3%, p<0.01). However, females had a higher prevalence of SHS exposure than males (30.2% vs 20.6%, p<0.01). Ethnic minorities had a higher prevalence of SHS exposure, drinking, and concurrent smoking and drinking, than Han participants (p<0.01). Participants with a higher education level had a higher prevalence of smoking, drinking, and concurrent smoking and drinking than their counterparts (p<0.01). In contrast, participants with a lower education level had a higher prevalence of SHS exposure than their counterparts (p<0.01). Multivariate logistic regression analysis found that smokers (AOR=1.31; 95% CI: 1.13-1.51), individuals exposed to SHS (AOR=1.24; 95% CI: 1.11-1.43), drinkers (AOR=1.31; 95%: CI: 1.15-1.50), and concurrent smokers and drinkers (AOR=1.45; 95% CI: 1.25-1.67) all had a higher probability of having hypertension (p<0.01). Additionally, concurrent smoking and drinking had the strongest association with the prevalence of hypertension (AOR=1.45; 95% CI: 1.25-1.67; p<0.01). CONCLUSIONS: Socioeconomic factors play an important role in influencing the prevalence of smoking, exposure to SHS, and drinking in rural southwest China. Interventions to prevent and reduce hypertension should, in particular, focus on smokers, individuals exposed to SHS, drinkers, and, in particular, concurrent smokers and drinkers.

15.
Environ Sci Technol ; 58(22): 9487-9499, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38691763

ABSTRACT

The booming development of artificial intelligence (AI) has brought excitement to many research fields that could benefit from its big data analysis capability for causative relationship establishment and knowledge generation. In toxicology studies using zebrafish, the microscopic images and videos that illustrate the developmental stages, phenotypic morphologies, and animal behaviors possess great potential to facilitate rapid hazard assessment and dissection of the toxicity mechanism of environmental pollutants. However, the traditional manual observation approach is both labor-intensive and time-consuming. In this Perspective, we aim to summarize the current AI-enabled image and video analysis tools to realize the full potential of AI. For image analysis, AI-based tools allow fast and objective determination of morphological features and extraction of quantitative information from images of various sorts. The advantages of providing accurate and reproducible results while avoiding human intervention play a critical role in speeding up the screening process. For video analysis, AI-based tools enable the tracking of dynamic changes in both microscopic cellular events and macroscopic animal behaviors. The subtle changes revealed by video analysis could serve as sensitive indicators of adverse outcomes. With AI-based toxicity analysis in its infancy, exciting developments and applications are expected to appear in the years to come.


Subject(s)
Artificial Intelligence , Zebrafish , Animals , High-Throughput Screening Assays/methods , Ecotoxicology , Toxicity Tests/methods
16.
J Phys Condens Matter ; 36(35)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38806050

ABSTRACT

Perovskite solar cells (PSCs) have garnered significant attention owing to their highly power conversion efficiency (PCE) and cost-effectiveness. Traditionally, screening for PSCs with superior photovoltaic parameters relies on resource-intensive trial-and-error experiments. Nowadays, time-saving machine learning (ML) techniques serve as an artificial intelligence approach to expedite the prediction of photovoltaic parameters using accumulated research datasets. In this study, we employ seven supervised ML methods to forecast key photovoltaic parameters for PSCs such as PCE, short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF). Particularly, we design an artificial neural network (ANN) architecture that incorporates residual connectivity and layer normalization after the linear layers to enhance the scope and adaptability of the network. For PCE andJsc, ANN demonstrates superior prediction accuracy, yielding root mean square errors of 2.632% and 2.244 mA cm-2, respectively. The Random Forest (RF) model exhibits exceptional prediction performance forVocand FF. Additionally, an interpretability analysis of the model is conducted to elucidate the impact of features on PCE prediction, offering a novel approach for accurate and interpretable ML methods in the context of PSCs.

17.
Cancer Med ; 13(9): e7228, 2024 May.
Article in English | MEDLINE | ID: mdl-38733174

ABSTRACT

BACKGROUND: The molecular and immunological characteristics of primary tumors and positive lymph nodes in esophageal squamous cell carcinoma (ESCC) are unknown and the relationship with recurrence is unclear, which this study attempted to explore. METHODS: A total of 30 ESCC patients with lymph node positive (IIB-IVA) were enrolled. Among them, primary tumor and lymph node specimens were collected from each patient, and subjected to 551-tumor-targeted DNA sequencing and 289-immuno-oncology RNA panel sequencing to identify the different molecular basis and immunological features, respectively. RESULTS: The primary tumors exhibited a higher mutation burden than lymph nodes (p < 0.001). One-year recurrent ESCC exhibited a higher Mucin16 (MUC16) mutation rate (p = 0.038), as well as univariate and multivariate analysis revealed that MUC16 mutation is independent genetic factor associated with reduced relapse-free survival (univariate, HR: 5.39, 95% CI: 1.67-17.4, p = 0.005; multivariate, HR: 7.36, 95% CI: 1.79-30.23, p = 0.006). Transcriptomic results showed non-relapse group had higher cytolytic activity (CYT) score (p = 0.025), and was enriched in the IFN-α pathway (p = 0.036), while those in the relapsed group were enriched in the TNF-α/NF-κB (p = 0.001) and PI3K/Akt pathway (p = 0.014). CONCLUSION: The difference in molecular characteristics between primary lesions and lymph nodes may be the cause of the inconsistent clinical outcomes. Mutations of MUC16 and poor immune infiltration are associated with rapid relapse of nodes-positive ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymph Nodes , Lymphatic Metastasis , Mutation , Neoplasm Recurrence, Local , Humans , Male , Female , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Neoplasm Recurrence, Local/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Esophageal Neoplasms/mortality , Lymph Nodes/pathology , Lymph Nodes/immunology , Aged , Biomarkers, Tumor/genetics , Prognosis , Membrane Proteins , CA-125 Antigen
18.
Clin Transl Sci ; 17(5): e13829, 2024 May.
Article in English | MEDLINE | ID: mdl-38769746

ABSTRACT

To investigate the effects of neutrophil elastase inhibitor (sivelestat sodium) on gastrointestinal function in sepsis. A reanalysis of the data from previous clinical trials conducted at our center was performed. Septic patients were divided into either the sivelestat group or the non-sivelestat group. The gastrointestinal dysfunction score (GIDS), feeding intolerance (FI) incidence, serum levels of intestinal barrier function and inflammatory biomarkers were recorded. The clinical severity and outcome variables were also documented. A total of 163 septic patients were included. The proportion of patients with GIDS ≥2 in the sivelestat group was reduced relative to that in the non-sivelestat group (9.6% vs. 22.5%, p = 0.047) on the 7th day of intensive care unit (ICU) admission. The FI incidence was also remarkably reduced in the sivelestat group in contrast to that in the non-sivelestat group (21.2% vs. 37.8%, p = 0.034). Furthermore, the sivelestat group had fewer days of FI [4 (3, 4) vs. 5 (4-6), p = 0.008]. The serum levels of d-lactate (p = 0.033), intestinal fatty acid-binding protein (p = 0.005), interleukin-6 (p = 0.001), white blood cells (p = 0.007), C-reactive protein (p = 0.001), and procalcitonin (p < 0.001) of the sivelestat group were lower than those of the non-sivelestat group. The sivelestat group also demonstrated longer ICU-free days [18 (0-22) vs. 13 (0-17), p = 0.004] and ventilator-free days [22 (1-24) vs. 16 (1-19), p = 0.002] compared with the non-sivelestat group. In conclusion, sivelestat sodium administration appears to improve gastrointestinal dysfunction, mitigate dysregulated inflammation, and reduce disease severity in septic patients.


Subject(s)
Gastrointestinal Diseases , Glycine , Sepsis , Sulfonamides , Humans , Sepsis/drug therapy , Sepsis/complications , Sepsis/blood , Male , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Middle Aged , Aged , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Gastrointestinal Diseases/drug therapy , Proteinase Inhibitory Proteins, Secretory , Biomarkers/blood , Treatment Outcome
19.
iScience ; 27(6): 109849, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38784008

ABSTRACT

Cholesterol efflux capacity (CEC) dysfunction in macrophages is important in atherosclerosis. However, the mechanism underlying CEC dysfunction remains unclear. We described the characteristics of ATF4 and inflammasome activation in macrophages during atherosclerosis through scRNA sequencing analysis. Then model of hyperlipemia was established in ApoE-/- mice; some were treated with tauroursodeoxycholic acid (TUDCA). TUDCA decreased the ATF4, Hspa, and inflammasome activation, reduced plaque area of the artery, and promoted CEC in macrophages. Furthermore, TUDCA abolished oxLDL-induced foam cell formation by inhibiting activation of the PERK/eIF2α/ATF4 and AIM2 inflammasome in macrophages. Further assays revealed ATF4 binding to AIM2 promoter, promoting its transcriptional activity significantly. Then we discovered that ATF4 affected AIM2-mediated foam cell formation by targeting ABCA1, which could be blocked by TUDCA. Our study demonstrated that TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing CEC of macrophage, which provided possibilities for the development of therapies.

20.
Leuk Lymphoma ; : 1-10, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785408

ABSTRACT

Brexucabtagene autoleucel (brexu-cel) is an autologous anti-CD19 CAR T-cell therapy approved in the USA and European Union (EU) for adults with relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL; aged ≥26 years in EU). Here, outcomes for patients with R/R B-ALL aged ≥26 years in ZUMA-3 treated with brexu-cel were compared with historical standard-of-care (SOC) therapy. After median follow-up of 26.8 months, the overall complete remission (CR) rate among patients treated with brexu-cel in Phase 2 (N = 43) was 72% and median overall survival (OS) was 25.4 months (95% CI, 15.9-NE). Median OS was improved in Phase 2 patients versus matched historical SOC-treated patients. Compared with aggregate historical trial data, Phase 1 and 2 patients had improved OS versus blinatumomab, inotuzumab, and chemotherapy in a matching-adjusted indirect comparison (MAIC) study. These data demonstrate clinical benefit of brexu-cel relative to SOC in patients ≥26 years with R/R B-ALL.

SELECTION OF CITATIONS
SEARCH DETAIL