Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 12(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34683214

ABSTRACT

Human red blood cells (RBCs) are subjected to high viscous shear stress, especially during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape. Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be fully described according to traditional knowledge about lateral movement of deformable spherical particles. Although several experimental and numerical studies have investigated RBC behavior in microchannels with similar diameters as RBCs, the detailed mechanical characteristics of RBC lateral movement-in particular, regarding the relationship between stable deformed shapes, equilibrium radial RBC position, and membrane load-has not yet been fully described. Thus, we numerically investigated the behavior of single RBCs with radii of 4 µm in a circular microchannel with diameters of 15 µm. Flow was assumed to be almost inertialess. The problem was characterized by the capillary number, which is the ratio between fluid viscous force and membrane elastic force. The power (or energy dissipation) associated with membrane deformations was introduced to quantify the state of membrane loads. Simulations were performed with different capillary numbers, viscosity ratios of the internal to external fluids of RBCs, and initial RBC centroid positions. Our numerical results demonstrated that axial or nonaxial migration of RBC depended on the stable deformed RBC shapes, and the equilibrium radial position of the RBC centroid correlated well with energy expenditure associated with membrane deformations.

2.
J Theor Biol ; 523: 110709, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33862088

ABSTRACT

Cerebrospinal fluid (CSF) flow in the perivascular space (PVS), which surrounds the arteries in the brain, is of paramount importance in the removal of metabolic waste. Despite a number of experimental and numerical studies regarding CSF flow, the underlying mechanics of CSF flow are still debated, especially regarding whether an arterial pulsation can indeed produce net CSF flow velocity. Furthermore, the relationship between CSF flow and arterial wall pulsation has not been fully defined. To clarify these questions, we numerically investigated the CSF flow in the PVS in an axisymmetric channel with a pulsating boundary, where CSF is modeled as an incompressible, Newtonian viscous fluid in non-porous space. Our numerical results show that the net CSF flow velocity driven by the arterial pulsation is consistent with that of previous animal experiments. However, the peak oscillatory velocity is two orders of magnitude larger than the net velocity. Interestingly, the net CSF flow velocity collapses on the analytical solution derived from the lubrication theory in analogy with Taylor's swimming sheet model.


Subject(s)
Arteries , Swimming , Animals , Brain , Pulsatile Flow
4.
Phys Rev E ; 99(4-1): 043110, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108665

ABSTRACT

The transition of the vortex pattern and the lift generated by a heaving wing in a uniform flow was investigated numerically. As a fundamental problem constituting the insects' flight maneuverability, we studied the relationship between a temporal change in the heaving wing motion and the change in the global vortex pattern. At a Strouhal number that generates an asymmetric vortex pattern, we found that temporal angular frequency reduction causes inversion of both the global vortex pattern and the lift sign. The inversion is initiated by the transfer of the leading-edge vortex, which interferes with the vortex pattern generated at the trailing edge. Successful inversion is conditioned on the starting phase and the time interval of the frequency reduction. The details of the process during the transition are discussed.

5.
Addict Biol ; 23(5): 1179-1188, 2018 09.
Article in English | MEDLINE | ID: mdl-28881072

ABSTRACT

The regulation of cue-induced craving for cigarettes is a key factor in smoking cessation. Outcomes of smoking cessation have been linked to self-efficacy, faith in one's own ability, in smokers. However, no study has examined the neural basis of self-efficacy during the control of craving. We examined whether self-efficacy can affect the neural response to smoking cues in smokers and ex-smokers using functional magnetic resonance imaging. During scanning, participants were instructed (1) to view smoking-related images passively, (2) to view the smoking-related images with a strategy focused on self-efficacy to control cue-induced craving or (3) to view neutral images. In smokers, the self-efficacy strategy significantly reduced self-reported craving. This strategy was related to increased activation in the rostral medial prefrontal cortex (rmPFC) and the pregenual anterior cingulate cortex in smokers compared with ex-smokers. Furthermore, smokers showed increased effective connectivity between rmPFC and hippocampus and between pregenual anterior cingulate cortex and parahippocampus gyrus when employing the self-efficacy strategy compared with ex-smokers. The magnitude of the rmPFC-hippocampus connectivity was positively correlated with self-reported self-efficacy. Our findings suggest that in smokers, self-efficacy is related to activation and connectivity in brain regions involved in regulating craving and self-assessment. The current study provides evidence for understanding the vunderlying cognitive and neurobiological mechanisms involved in the control of craving to smoke cigarettes.


Subject(s)
Brain/physiopathology , Craving/physiology , Ex-Smokers , Magnetic Resonance Imaging/methods , Self Efficacy , Smokers , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Cues , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/drug effects , Neural Pathways/physiopathology
6.
Schizophr Bull ; 44(3): 535-541, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29036371

ABSTRACT

It is widely known that there is a high prevalence of cigarette smoking in schizophrenia. One of the explanations is the self-medication hypothesis. Based on this hypothesis, it has been suggested that nicotine has procognitive effect or even neuroprotective effect in schizophrenia. However, cigarettes contain numerous neurotoxic substances, making the net effect of cigarette smoking on brain function and structure complex. Indeed, recent studies have called into question the self-medication hypothesis. We aimed to test whether there is an interaction between diagnosis and smoking status in gray matter volume, ie, whether smoking has specific effects on gray matter or whether main effects of these 2 variables additively affect common brain regions. Magnetic resonance imaging (MRI) images were obtained from 4 groups: (1) normal controls with no smoking history, (2) normal controls currently smoking and/or with a past history of smoking, (3) schizophrenia patients with no smoking history, and (4) schizophrenia patients currently smoking and/or with a past history of smoking. We used voxel-based morphometry to compare gray matter volumes among the 4 groups. We did not find any interaction between diagnosis and smoking, but we did find negative additive effects of schizophrenia diagnosis and smoking status in the left prefrontal cortex. The decrease in left prefrontal volume was associated with greater numbers of cigarette pack years and severe positive and negative symptoms. The current findings do not support the neuroprotective effect of smoking on gross brain structure in schizophrenia, emphasizing the necessity of longitudinal studies to test causal relationships among these variables.


Subject(s)
Cigarette Smoking/pathology , Gray Matter/pathology , Prefrontal Cortex/pathology , Schizophrenia/pathology , Adult , Cigarette Smoking/adverse effects , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/diagnostic imaging , Schizophrenia/diagnostic imaging
7.
Phys Rev E ; 96(2-1): 023106, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950497

ABSTRACT

In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

8.
Toxicon ; 114: 53-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26923160

ABSTRACT

To investigate seasonal changes in the whole body content and tissue distribution of tetrodotoxin (TTX) in the pufferfish Takifugu niphobles, wild individuals were collected from the coastal waters around Miura Peninsula from November 2010 to May 2012, and their tissues were subjected to LC-MS/MS analysis. Fish that were sexually mature were classified as being in the maturation period (April), the spawning period (May-July) or the "ordinary period" (i.e., other months). In both sexes, gonad somatic index rapidly increased during the maturation period and then decreased during the spawning period. Whole body TTX content was significantly higher during the maturation/spawning period than in the ordinary period. Through all seasons, TTX was localized in the skin or ovary in females and in the skin or liver in males: the difference in TTX localization between females and males was particularly evident during the spawning period.


Subject(s)
Seasons , Takifugu/metabolism , Tetrodotoxin/metabolism , Animals , Chromatography, Liquid , Female , Liver/metabolism , Male , Ovary/metabolism , Sexual Behavior, Animal , Sexual Maturation , Skin/metabolism , Tandem Mass Spectrometry , Tetrodotoxin/isolation & purification
9.
J Gambl Stud ; 32(4): 1143-1154, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26711104

ABSTRACT

Pathological gambling (PG) is characterized by continual repeated gambling behavior despite negative consequences. PG is considered to be a disorder of altered decision-making under risk, and behavioral economics tools were utilized by studies on decision-making under risk. At the same time, PG was suggested to be a heterogeneous disorder in terms of personality traits as well as risk attitude. We aimed to examine the heterogeneity of PG in terms of loss aversion, which means that a loss is subjectively felt to be larger than the same amount of gain. Thirty-one male PG subjects and 26 male healthy control (HC) subjects underwent a behavioral economics task for estimation of loss aversion and personality traits assessment. Although loss aversion in PG subjects was not significantly different from that in HC subjects, distributions of loss aversion differed between PG and HC subjects. HC subjects were uniformly classified into three levels (low, middle, high) of loss aversion, whereas PG subjects were mostly classified into the two extremes, and few PG subjects were classified into the middle range. PG subjects with low and high loss aversion showed a significant difference in anxiety, excitement-seeking and craving intensity. Our study suggested that PG was a heterogeneous disorder in terms of loss aversion. This result might be useful for understanding cognitive and neurobiological mechanisms and the establishment of treatment strategies for PG.


Subject(s)
Anxiety/psychology , Behavior, Addictive/psychology , Gambling/psychology , Self Report , Adult , Decision Making , Humans , Male , Middle Aged , Personality Assessment , Psychometrics , Risk Factors
10.
Article in English | MEDLINE | ID: mdl-25375427

ABSTRACT

The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

11.
Front Psychol ; 5: 1013, 2014.
Article in English | MEDLINE | ID: mdl-25250011

ABSTRACT

Pathological gambling (PG) is a chronic mental disorder characterized by a difficulty restraining gambling behavior despite negative consequences. Although brain abnormalities in patients with substance use disorders are caused by repetitive drug use and recover partly with drug abstinence, the relationship between brain activity and duration of illness or abstinence of gambling behavior in PG patients remains unclear. Here, using functional magnetic resonance imaging, we compared the brain activity of 23 PG patients recruited from a treatment facility with 27 demographically-matched healthy control subjects during reward anticipation, and examined the correlations between brain activity and duration of illness or abstinence in PG patients. During reward anticipation, PG patients showed decreased activity compared to healthy controls in a broad range of the reward system regions, including the insula cortex. In PG patients, activation in the left insula showed a significant negative correlation with illness duration. Our findings suggest that insular activation during reward anticipation may serve as a marker of progression of pathological gambling.

12.
Article in English | MEDLINE | ID: mdl-24580299

ABSTRACT

A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically steady state of elastic wave turbulence. The analytical representation of the nonlinear frequency is obtained by evaluating the extended self-nonlinear interactions. The critical wave numbers at which the nonlinear frequencies are comparable with the linear frequencies agree with the separation wave numbers between the weak and strong turbulence spectra. We also confirm the validity of our analytical representation of the separation wave numbers through comparison with the results of direct numerical simulations by changing the material parameters of a vibrating plate.

13.
Toxicon ; 78: 35-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24279996

ABSTRACT

Marine pufferfish contain tetrodotoxin (TTX), an extremely potent neurotoxin. All species of the genus Takifugu accumulate TTX in the liver and ovaries, although the tissue(s) in which it is localized can differ among species. TTX is the major defense strategy the pufferfish appears to use against predators. TTX is also used as a male-attracting pheromone during spawning. Here we demonstrate an additional (and unexpected) use of maternal TTX in the early larval stages of the Takifugu pufferfish. Predation experiments demonstrated that juveniles of all the species of fish used as predators ingested pufferfish larvae, but spat them out promptly. Liquid Chromatography-Tandem Mass Spectrometry (LC-MSMS) analysis revealed that the pufferfish larvae contain a small quantity of TTX, which is not enough to be lethal to the predators. Immunohistochemical analysis with anti-TTX monoclonal antibody revealed that the TTX is primarily localized in the body surface of the larvae as a layer of protection. Our study showed the female parent of the Takifugu pufferfish vertically transfers TTX to the larvae through its accumulation in the ovaries, and subsequent localization on the body surface of the larvae.


Subject(s)
Predatory Behavior/drug effects , Takifugu/metabolism , Tetrodotoxin/pharmacology , Animals , Antibodies, Monoclonal , Bass/physiology , Chromatography, Liquid , Female , Flounder/physiology , Immunohistochemistry , Japan , Larva/chemistry , Larva/growth & development , Ovary/chemistry , Ovum/chemistry , Predatory Behavior/physiology , Skin/chemistry , Takifugu/growth & development , Tandem Mass Spectrometry , Tetrodotoxin/immunology , Tetrodotoxin/metabolism
14.
Article in English | MEDLINE | ID: mdl-25615184

ABSTRACT

A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

15.
Article in English | MEDLINE | ID: mdl-23848763

ABSTRACT

The random-phase-and-amplitude-formalism (RPA) has significantly extended the scope of weak turbulence studies. Because the RPA does not assume any proximity to the Gaussianity in the wave number space, it can predict, for example, how the fluctuation of the complex amplitude of each wave mode grows through nonlinear interactions with other modes and how it approaches the Gaussianity. Thus, the RPA has a great potential capability, but its validity has been assessed neither numerically nor experimentally. We compare the theoretical predictions given by the RPA with the results of direct numerical simulations (DNS) for a three-wave Hamiltonian system, thereby assessing the validity of the RPA. The predictions of the RPA agree quite well with the results of DNS in all the aspects of the statistical characteristics of the mode amplitudes studied here.

16.
Phys Rev Lett ; 110(10): 105501, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23521269

ABSTRACT

A variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we perform direct numerical simulations according to the Föppl-von Kármán equation, and successfully reproduce the variability of the energy spectra by changing the magnitude of external force systematically. When the total energies in wave fields are small, the energy spectra are close to a statistically steady solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave fields, another self-similar spectrum is found. The coexistence of the weakly nonlinear spectrum in large wave numbers and the strongly nonlinear spectrum in small wave numbers is also found in moderate energy wave fields.

17.
J Plant Res ; 125(6): 735-48, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22644315

ABSTRACT

Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.


Subject(s)
Dipterocarpaceae/metabolism , Gases/metabolism , Plant Leaves/metabolism , Carbon/metabolism , Cell Respiration , Computer Simulation , Dipterocarpaceae/physiology , Electron Transport , Geography , Humidity , Malaysia , Photosynthesis , Plant Leaves/physiology , Plant Stomata/metabolism , Plant Stomata/physiology , Rain , Temperature , Tropical Climate
18.
Bioinspir Biomim ; 7(2): 025002, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22617048

ABSTRACT

The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.


Subject(s)
Biological Clocks/physiology , Butterflies/physiology , Flight, Animal/physiology , Models, Biological , Wings, Animal/physiology , Animals , Computer Simulation , Elastic Modulus
SELECTION OF CITATIONS
SEARCH DETAIL
...