Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 5(3): e00316, 2017 06.
Article in English | MEDLINE | ID: mdl-28603634

ABSTRACT

Prostaglandin (PG) E2 is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE 2 production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE 2 are transduced through various receptor sub-types. Prostaglandin E2 type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE 2 modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.

2.
Bioorg Med Chem Lett ; 27(6): 1478-1483, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28190634

ABSTRACT

We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.


Subject(s)
Benzoates/chemistry , Benzoates/pharmacology , Drug Discovery , Microsomes/drug effects , Prostaglandin-E Synthases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Microsomes/enzymology , Prostaglandin-E Synthases/chemistry , Rats
3.
Bioorg Med Chem Lett ; 26(19): 4824-4828, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27554445

ABSTRACT

Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30µM, and failed to inhibit human mPGES-2 at 62.5µM in a microsomal prep assay. These data are consistent with selective mPGES-1-mediated reduction of PGE2. In dog, 14 had oral bioavailability (74%), clearance (3.62mL/(min*kg)) and volume of distribution (Vd,ss=1.6L/kg) values within our target ranges. For these reasons, 14 was selected for further study.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Prostaglandin-E Synthases/antagonists & inhibitors , A549 Cells , Animals , Crystallography, X-Ray , Dogs , Humans , Piperidines/pharmacokinetics , Rats , Species Specificity , Structure-Activity Relationship
4.
J Med Chem ; 59(1): 194-205, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26653180

ABSTRACT

As part of a program aimed at the discovery of antinociceptive therapy for inflammatory conditions, a screening hit was found to inhibit microsomal prostaglandin E synthase-1 (mPGES-1) with an IC50 of 17.4 µM. Structural information was used to improve enzyme potency by over 1000-fold. Addition of an appropriate substituent alleviated time-dependent cytochrome P450 3A4 (CYP3A4) inhibition. Further structure-activity relationship (SAR) studies led to 8, which had desirable potency (IC50 = 12 nM in an ex vivo human whole blood (HWB) assay) and absorption, distribution, metabolism, and excretion (ADME) properties. Studies on the formulation of 8 identified 8·H3PO4 as suitable for clinical development. Omission of a lipophilic portion of the compound led to 26, a readily orally bioavailable inhibitor with potency in HWB comparable to celecoxib. Furthermore, 26 was selective for mPGES-1 inhibition versus other mechanisms in the prostanoid pathway. These factors led to the selection of 26 as a second clinical candidate.


Subject(s)
Analgesics/chemical synthesis , Analgesics/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Microsomes/enzymology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Availability , Celecoxib/pharmacology , Cyclooxygenase Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Dogs , Drug Discovery , Humans , Microsomes/drug effects , Models, Molecular , Prostaglandin-E Synthases , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 25(16): 3176-8, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26091726

ABSTRACT

EP4 is a prostaglandin E2 receptor that is a target for potential anti-nociceptive therapy. Described herein is a class of amphoteric EP4 antagonists which reverses PGE2-induced suppression of TNFα production in human whole blood. From this class, a potent and highly bioavailable compound (6) has been selected for potential clinical studies. EP4 binding and functional data, selectivity, and pharmacokinetic properties of this compound are included.


Subject(s)
Analgesics/chemistry , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Analgesics/metabolism , Analgesics/pharmacokinetics , Animals , Blood Cells/cytology , Blood Cells/drug effects , Blood Cells/metabolism , Dogs , Half-Life , Humans , Lipopolysaccharides/toxicity , Protein Binding , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
6.
Bioorg Med Chem ; 18(5): 1899-909, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20149966

ABSTRACT

A series of lavendamycin analogues with two, three or four substituents at the C-6, C-7 N, C-2', C-3' and C-11' positions were synthesized via short and efficient methods and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor agents. The compounds were prepared through Pictet-Spengler condensation of the desired 2-formylquinoline-5,8-diones with the required tryptophans followed by further needed transformations. Metabolism and toxicity studies demonstrated that the best substrates for NQO1 were also the most selectively toxic to NQO1-rich tumor cells compared to NQO1-deficient tumor cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Streptonigrin/analogs & derivatives , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Cell Line, Tumor , Humans , NAD(P)H Dehydrogenase (Quinone)/chemistry , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Streptonigrin/chemistry , Streptonigrin/metabolism , Streptonigrin/toxicity , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 17(24): 6744-9, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18029178

ABSTRACT

A series of potent amide linked PPARgamma/delta dual agonists (1a) has been discovered through rational design. In the ZDF rat model of type 2 diabetes, compound (R)-3-[4-(3-{1-[(5-chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-ethyl}-5-fluoro-phenoxy)-2-ethyl-phenyl]-propionic acid (42) from this series has demonstrated glucose lowering efficacy comparable to the marketed PPARgamma agonist rosiglitazone with less weight gain.


Subject(s)
Amides/chemistry , Drug Design , Indoles/chemical synthesis , PPAR delta/agonists , PPAR gamma/agonists , Animals , Combinatorial Chemistry Techniques , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Indoles/chemistry , Indoles/pharmacology , Molecular Structure , Rats
SELECTION OF CITATIONS
SEARCH DETAIL