Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395283

ABSTRACT

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Subject(s)
Chitosan , Mesenchymal Stem Cells , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Microspheres , Chitosan/pharmacology , Polyglycolic Acid/pharmacology , Lactic Acid/pharmacology , Glycols , Delayed-Action Preparations/pharmacology , Cells, Cultured , Cell Differentiation , Chondrogenesis
2.
Bioact Mater ; 33: 262-278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38076650

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic inflammatory and fibrotic response-driven lung disease that is difficult to cure because it manifests excessive profibrotic cytokines (e.g., TGF-ß), activated myofibroblasts, and accumulated extracellular matrix (ECM). In an attempt to develop an inhalation formulation with enhanced antifibrotic efficacy, we sought to fabricate unique aerosolizable inhaled microgels (µGel) that contain nintedanib-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs; n-PN) and pirfenidone-liposomes (p-LP). The aero-µGel was ∼12 µm, resisted phagocytosis by alveolar macrophages in vitro and in vivo, and protected inner-entrapped n-PN and p-LP. The n-PN/p-LP@aero-µGel caused enhanced/extended antifibrotic efficacy in a bleomycin-induced pulmonary fibrosis mouse presumably due to prolonged lung residence. Consequently, the results obtained by intratracheal aerosol insufflation of our n-PN/p-LP@aero-µGel twice a week were much better than those by as many as seven doses of single or mixed applications of n-PN or p-LP. The antifibrotic/pharmacokinetic results for the n-PN/p-LP@aero-µGel included reduced fibrosis progression, restored lung physiological functions, deactivated myofibroblasts, inhibited TGF-ß progression, and suppressed ECM component production (collagen I and α-SMA) along with prolonged lung retention time. We believe that our n-PN/p-LP@aero-µGel increased the local availability of both nintedanib and pirfenidone due to evasion of alveolar macrophage phagocytosis and prolonged lung retention with reduced systemic distribution. Through this approach, our inhalation formulation subsequently attenuated fibrosis progression and improved lung function. Importantly, these results hold profound implications in the therapeutic potential of our n-PN/p-LP@aero-µGel to serve as a clinically promising platform, providing significant advancements for improved treatment of many respiratory diseases including IFP.

3.
Int J Pharm ; 648: 123578, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37931729

ABSTRACT

The purpose of this study was to investigate the impact of carrier hydrophilicity on solid self nano-emulsifying drug delivery system (SNEDDS) and self nano-emulsifying granule system (SEGS). The mesoporous calcium silicate (Ca-silicate) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) were utilised as hydrophobic carrier and hydrophilic carrier, respectively. The liquid SNEDDS formulation, composed of Tween80/Kollipohr EL/corn oil (35/50/15%) with 31% (w/w) dexibuprofen, was spray-dried and fluid-bed granulated together with Avicel using Ca-silicate or HP- ß-CD as a solid carrier, producing four different solid SNEDDS and SEGS formulations. Unlike the Ca-silicate-based systems, spherical shape and aggregated particles were shown in HP-ß-CD-based solid SNEDDS and SEGS, respectively. Molecular interaction was detected between Ca-silicate and the drug; though, none was shown between HP-ß-CD and the drug. Each system prepared with either carrier gave no significant differences in micromeritic properties, crystallinity, droplet morphology, size, dissolution and oral bioavailability in rats. However, the HP-ß-CD-based system more significantly improved the drug solubility than did the Ca-silicate-based system. Therefore, both carriers hardly affected the properties of both solid SNEDDS and SEGS; though, there were differences in the aspect of appearance, molecular interaction and solubility.


Subject(s)
Drug Delivery Systems , Nanoparticles , Rats , Animals , Drug Delivery Systems/methods , Nanoparticle Drug Delivery System , 2-Hydroxypropyl-beta-cyclodextrin , Solubility , Silicates , Hydrophobic and Hydrophilic Interactions , Emulsions/chemistry , Biological Availability , Administration, Oral , Particle Size , Nanoparticles/chemistry
4.
J Control Release ; 360: 482-495, 2023 08.
Article in English | MEDLINE | ID: mdl-37423526

ABSTRACT

In an attempt to achieve antitumor effects by switching the phenotype of macrophages from the tumor-promoting M2 type to the tumor-suppressing M1 type, we fabricated mannose-decorated/macrophage membrane-coated, silica-layered NaErF4@NaLuF4 upconverting nanoparticles (UCNPs) co-doped with perfluorocarbon (PFC)/chlorin e6 (Ce6) and loaded with paclitaxel (PTX) (UCNP@mSiO2-PFC/Ce6@RAW-Man/PTX: ∼61 nm; -11.6 mV). These nanoparticles were designed to have two major functionalities, (i) efficient singlet oxygen generation aided by an oxygen supply and (ii) good targeting to tumor-associated macrophage (TAMs) (M2-type), to induce polarization to M1 type macrophages that release proinflammatory cytokines and suppress breast cancers. The primary UCNPs consisted of lanthanide elements (erbium and lutetium) in a core@shell structure, and they facilely emitted 660 nm light in response to a deep-penetrating 808 nm near-infrared laser. Moreover, the UCNPs@mSiO2-PFC/Ce6@RAW-Man/PTX were able to release O2 and generate 1O2 because of the co-doped PFC/Ce6 and upconversion. Our nanocarriers' excellent uptake to RAW 264.7 macrophage cells (M2 type) and efficient M1-type polarization activity were clearly demonstrated using qRT-PCR and immunofluorescence-based confocal laser scanning microscopy. Our nanocarriers displayed significant cytotoxicity to 4T1 cells in 2D culture and 3D co-culture systems of 4T1/RAW 264.7 cells. More importantly, UCNPs@mSiO2-PFC/Ce6@RAW-Man/PTX (+808 nm laser) noticeably suppressed tumor growth in 4T1-xenografted mice, compared with the other treatment groups (332.4 vs. 709.5-1185.5 mm3). We attribute this antitumor efficacy to the prominent M1-type macrophage polarization caused by our nanocarriers through efficient ROS/O2 generation and targeting of M2-type TAMs via mannose ligands on coated macrophage-membrane.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Mannose , Macrophages , Nanoparticles/chemistry , Light , Paclitaxel/therapeutic use , Cell Line, Tumor
5.
Article in English | MEDLINE | ID: mdl-37124157

ABSTRACT

Sorafenib, marketed under the brand name Nexavar®, is a multiple tyrosine kinase inhibitor drug that has been actively used in the clinical setting for the treatment of several cancers. However, the low solubility and bioavailability of sorafenib constitute a significant barrier to achieving a good therapeutic outcome. We developed a sorafenib-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation composed of capmul MCM, tween 80, and tetraglycol, and demonstrated that the SNEDDS formulation could improve drug solubility with excellent self-emulsification ability. Moreover, the sorafenib-loaded SNEDDS exhibited anticancer activity against Hep3B and KB cells, which are the most commonly used hepatocellular carcinoma and oral cancer cell lines, respectively. Subsequently, to improve the storage stability and to increase the possibility of commercialization, a solid SNEDDS for sorafenib was further developed through the spray drying method using Aerosil® 200 and PVP K 30. X-ray diffraction and differential scanning calorimeter data showed that the crystallinity of the drug was markedly reduced, and the dissolution rate of the drug was further improved in formulation in simulated gastric and intestinal fluid conditions. In vivo study, the bioavailability of the orally administered formulation increases dramatically compared to the free drug. Our results highlight the use of the solid-SNEDDS formulation to enhance sorafenib's bioavailability and outlines potential translational directions for oral drug development.

6.
J Control Release ; 359: 52-68, 2023 07.
Article in English | MEDLINE | ID: mdl-37220804

ABSTRACT

The combination of photothermal therapy and chemotherapy has been considered a promising strategy for improving the excellent antitumor activities of these treatments. In this study, we developed a new simple type of pH-sensitive chemo-photothermal combination agent capable of repeated exposures to a near-infrared (NIR) laser and evaluated its anticancer efficacy in vitro and in vivo. Doxorubicin (Dox) and gold nanoclusters (GNCs) were successfully co-loaded into pH-sensitive nanoparticles (poly(ethylene glycol)-poly[(benzyl-l-aspartate)-co-(N-(3-aminopropyl)imidazole-L-aspartamide)] (PEG-PABI)), resulting in a particle size of approximately120 nm with a narrow size distribution. The dual drug-loaded nanoparticles (Dox/GNC-loaded PEG-PABI micelles (Dox/GNC-Ms)) showed consistent pH-sensitive properties and heat generation efficiency after repeated NIR laser exposure. In particular, GNC-M has improved photothermal stability while maintaining high photothermal conversion efficiency, addressing the shortcomings of previous gold nanoparticles. As the concentration of GNC-Ms, irradiation light exposure time, and light source intensity increased, the amount of heat generated and the anticancer effect increased. When Dox was encapsulated with GNCs (Dox/GNC-Ms), a faster drug release rate under acidic pH conditions and a strong synergistic effect against U87MG cells were observed. When the Dox/GNC-M system was extended to in vivo studies, it effectively increased the temperature of the tumor tissue under near-infrared irradiation and showed excellent anticancer efficacy. Therefore, the Dox/GNC-M system could be a simple but promising strategy for chemo-photothermal combination treatment capable of targeting acidic tumors.


Subject(s)
Hyperthermia, Induced , Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Gold/chemistry , Hyperthermia, Induced/methods , Metal Nanoparticles/chemistry , Phototherapy/methods , Neoplasms/drug therapy , Doxorubicin/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Cell Line, Tumor
7.
Int J Nanomedicine ; 18: 1615-1630, 2023.
Article in English | MEDLINE | ID: mdl-37020691

ABSTRACT

Introduction: Ligand-conjugated liposomes are promising for the treatment of specific receptor-overexpressing cancers. However, previous studies have shown inconsistent results because of the varying properties of the ligand, presence of a polyethylene glycol (PEG) coating on the liposome, length of the linker, and density of the ligand. Methods: Here, we prepared PEGylated liposomes using PEG-linkers of various lengths conjugated with folate and evaluated the effect of the PEG-linker length on the nanoparticle distribution and pharmacological efficacy of the encapsulated drug both in vitro and in vivo. Results: When folate was conjugated to the liposome surface, the cellular uptake efficiency in folate receptor overexpressed KB cells dramatically increased compared to that of the normal liposome. However, when comparing the effect of the PEG-linker length in vitro, no significant difference between the formulations was observed. In contrast, the level of tumor accumulation of particles in vivo significantly increased when the length of the PEG-linker was increased. The tumor size was reduced by >40% in the Dox/FL-10K-treated group compared to that in the Dox/FL-2K- or 5K-treated groups. Discussion: Our study suggests that as the length of PEG-linker increases, the tumor-targeting ability can be enhanced under in vivo conditions, which can lead to an increase in the antitumor activity of the encapsulated drug.


Subject(s)
Folic Acid , Liposomes , Humans , Ligands , Polyethylene Glycols , Drug Compounding
8.
ACS Nano ; 17(1): 382-401, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36579941

ABSTRACT

As an emerging anticancer strategy, ferroptosis has recently been developed in combination with current therapeutic modalities to overcome the existing limitations of conventional therapies. Herein, an ultraviolet (UV) upconversion luminescence-fueled nanoreactor is explored to combine ferroptosis and apoptosis through the UV-catalyzed Fenton reaction of an iron supplement (ferric ammonium citrate) loaded in a mesoporous silica layer in addition to the support of a chemotherapeutic agent (cisplatin) attached on the functionalized silica surface for the treatment of triple negative breast cancer (TNBC). The nanoplatform can circumvent the low penetration depth typical of UV light by upconverting near-infrared irradiation and emitting UV photons that convert Fe3+ to Fe2+ to boost the generation of hydroxyl radicals (·OH), causing devastating lipid peroxidation. Apart from DNA damage-induced apoptosis, cisplatin can also catalyze Fenton-based therapy by its abundant production of hydrogen peroxide (H2O2). As a bioinspired lipid membrane, the folate receptor-targeted liposome as the coating layer offers high biocompatibility and colloidal stability for the upconversion nanoparticles, in addition to prevention of the premature release of encapsulated hydrophilic compounds, before driving the nanoformulation to the target tumor site. As a result, superior antitumor efficacy has been observed in a 4T1 tumor-bearing mouse model with negligible side effects, suggesting that such a nanoformulation could play a pivotal role in effective apoptosis-strengthened ferroptosis TNBC therapy.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Cisplatin/pharmacology , Luminescence , Hydrogen Peroxide/pharmacology , Apoptosis , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Oxidative Stress , Nanotechnology , Silicon Dioxide/pharmacology , Cell Line, Tumor
9.
Bioact Mater ; 22: 112-126, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36203958

ABSTRACT

Inspired by erythrocytes that contain oxygen-carrying hemoglobin (Hb) and that exhibit photo-driven activity, we introduce homogenous-sized erythrocyte-like Hb microgel (µGel) systems (5-6 µm) that can (i) emit heat, (ii) supply oxygen, and (iii) generate reactive oxygen species (ROS; 1O2) in response to near-infrared (NIR) laser irradiation. Hb µGels consist of Hb, bovine serum albumin (BSA), chlorin e6 (Ce6) and erbium@lutetium upconverting nanoparticles (UCNPs; ∼35 nm) that effectively convert 808 nm NIR light to 660 nm visible light. These Hb µGels are capable of releasing oxygen to help generate sufficient reactive oxygen species (1O2) from UCNPs/Ce6 under severely hypoxic condition upon NIR stimulation for efficient photodynamic activity. Moreover, the Hb µGels emit heat and increase surface temperature due to NIR light absorption by heme (iron protoporphyrin IX) and display photothermal activity. By changing the Hb/UCNP/Ce6 ratio and controlling the amount of NIR laser irradiation, it is possible to formulate bespoke Hb µGels with either photothermal or photodynamic activity or both in the context of combined therapeutic effect. These Hb µGels effectively suppress highly hypoxic 4T1 cell spheroid growth and xenograft mice tumors in vivo.

10.
Biomater Sci ; 10(24): 7117-7132, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36350285

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by rapid tumor growth and resistance to cancer therapy, and has a poor prognosis. Accumulating data have revealed that cancer metabolism relies on both the Warburg effect and oxidative phosphorylation (OXPHOS), which are strongly related to the high proliferation and chemoresistance of cancer cells. Phototherapy is considered as a non-invasive method to precisely control drug activity with reduced side effects. Herein, our group introduced an Abraxane-like nanoplatform, named LCIR NPs, which significantly eradicates cancer cells via synergism between metabolic reprogramming and phototherapy effects. Endowed with mitochondria-targeting residues, the nanoparticles efficiently inhibited mitochondrial complexes I and IV as well as hexokinase II, leading to the depletion of intracellular ATP. Consequently, the photodynamic and photothermal effect triggered by NIR irradiation was enhanced due to the alleviation of hypoxia and the thermoresistance mechanism that rely on mitochondrial metabolism. In vivo experiments showed that the tumor size of mice that received the combination treatment was only 50.7 mm3, which was 21 times smaller than that of the untreated group and was much lower than those of other single treatments after 21 days. Additionally, almost no systemic undesired toxicity was detected during the observation period. We believe that the concept of LCIR as presented here offers a potential platform to overcome the resistance to conventional therapies by the incorporation with the energy metabolism inhibition approach.


Subject(s)
Albumins , Neoplasms , Animals , Mice
11.
Biomacromolecules ; 23(9): 3688-3697, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35977087

ABSTRACT

In this study, functional twin liposomes (TLs) were designed by linking avidin-anchored single liposomes and biotin-anchored single liposomes via avidin-biotin interactions. Here, we first punched a hole on the liposome surface using the liposome magnetoporation method to prepare functional single liposomes, which were used for safely encapsulating quercetin (QER, as a model prodrug) or laccase (LAC, as a bioactive enzyme) inside the liposomes without the use of organic solvents; the pores were then plugged by pH-sensitive glycol chitosan grafted with 3-diethylaminopropylamine (GDEAP) and avidin (or biotin). As a result, single liposomes with QER and biotin-GDEAP were efficiently coupled with other liposomes with LAC and avidin-GDEAP. We demonstrated that the TLs could accelerate QER and LAC release at acidic pH (6.8), improving the LAC-mediated oxidization of QER and significantly elevating tumor cell death, suggesting that this strategy can be used as an efficient method for the programmed action of prodrugs.


Subject(s)
Avidin , Prodrugs , Avidin/metabolism , Biotin , Hydrogen-Ion Concentration , Laccase , Liposomes , Prodrugs/pharmacology , Quercetin/pharmacology
12.
Pharmaceutics ; 14(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35456689

ABSTRACT

Since clinical approval of the first liposomal formulation encapsulating a chemotherapeutic agent, nanoscale delivery systems have been a rapidly developing science [...].

13.
Pharmaceutics ; 14(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35057044

ABSTRACT

Combined therapy using photothermal and photodynamic treatments together with chemotherapeutic agents is considered one of the most synergistic treatment protocols to ablate hypoxic tumors. Herein, we sought to fabricate an in situ-injectable PEG hydrogel system having such multifunctional effects. This PEG hydrogel was prepared with (i) nabTM-technique-based paclitaxel (PTX)-bound albumin nanoparticles with chlorin-e6 (Ce6)-conjugated bovine serum albumin (BSA-Ce6) and indocyanine green (ICG), named ICG/PTX/BSA-Ce6-NPs (~175 nm), and (ii) an albumin-stabilized perfluorocarbon (PFC) nano-emulsion (BSA-PFC-NEs; ~320 nm). This multifunctional PEG hydrogel induced moderate and severe hyperthermia (41-42 °C and >48 °C, respectively) at the target site under two different 808 nm laser irradiation protocols, and also induced efficient singlet oxygen (1O2) generation under 660 nm laser irradiation supplemented by oxygen produced by ultrasound-triggered PFC. Due to such multifunctionality, our PEG hydrogel formula displayed significantly enhanced killing of three-dimensional 4T1 cell spheroids and also suppressed the growth of xenografted 4T1 cell tumors in mice (tumor volume: 47.7 ± 11.6 and 63.4 ± 13.0 mm3 for photothermal and photodynamic treatment, respectively, vs. PBS group (805.9 ± 138.5 mm3), presumably based on sufficient generation of moderate heat as well as 1O2/O2 even under hypoxic conditions. Our PEG hydrogel formula also showed excellent hyperthermal efficacy (>50 °C), ablating the 4T1 tumors when the irradiation duration was extended and output intensity was increased. We expect that our multifunctional PEG hydrogel formula will become a prototype for ablation of otherwise poorly responsive hypoxic tumors.

14.
Mater Today Bio ; 12: 100164, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34877519

ABSTRACT

Depletion of tumor extracellular matrix (ECM) is viewed as a promising approach to enhance the antitumor efficacy of chemotherapeutic-loaded nanoparticles. Hyaluronidase (HAase) destroys hyaluronic acid-based tumor ECM, but it is active solely at acidic pHs of around 5.0 and is much less active at physiological pH. Herein, we report the development of our novel UV-light-reactive proton-generating and hyaluronidase-loaded albumin nanoparticles (o-NBA/HAase-HSA-NPs). The method to prepare the nanoparticles was based on pH-jump chemistry using o-nitrobenzaldehyde (o-NBA) in an attempt to address the clinical limitation of HAase. When in suspension/PEG-hydrogel and irradiated with UV light, the prepared o-NBA/HAase-HSA-NPs clearly reduced the pH of the surrounding medium to as low as 5.0 by producing protons and were better able to break down HA-based tumor cell spheroids (AsPC-1) and HA-hydrogel/microgels, presumably due to the enhanced HA activity at a more optimal pH. Moreover, when formulated as an intratumor-injectable PEG hydrogel, the o-NBA/HAase-HSA-NPs displayed significantly enhanced tumor suppression when combined with intravenous paclitaxel-loaded HSA-NPs (PTX-HSA-NPs) in AsPC-1 tumor-bearing mice: The tumor volume in mice administered UV-activated o-NBA/HAase-HSA-NPs and PTX-HSA-NPs was 198.2 â€‹± â€‹30.0 â€‹mm3, whereas those administered PBS or non-UV-activated o-NBA/HAase-HSA-NPs and PTX-HSA-NPs had tumor volumes of 1230.2 â€‹± â€‹256.2 and 295.4 â€‹± â€‹17.1 â€‹mm3, respectively. These results clearly demonstrated that when administered with paclitaxel NPs, our photoreactive o-NBA/HAase-HSA-NPs were able to reduce pH and degrade HA-based ECM, and thereby significantly suppress tumor growth. Consequently, we propose our o-NBA/HAase-HSA-NPs may be a prototype for development of future nanoparticle-based HA-ECM-depleting tumor-ablating agents.

15.
Int J Nanomedicine ; 16: 5797-5810, 2021.
Article in English | MEDLINE | ID: mdl-34465992

ABSTRACT

BACKGROUND: The purpose of this study was to screen various drug delivery systems for improving the aqueous solubility and oral bioavailability of sildenafil. Three representative techniques, solid self-nanoemulsifying drug delivery systems (SNEDDS), amorphous microspheres and crystalline microspheres, were compared. METHODS: Both microspheres systems contained sildenafil:Labrasol:PVP at a weight ratio of 1:1:6. The amorphous microspheres were manufactured using ethanol, while crystalline microspheres were generated using distilled water. Liquid SNEDDS was composed of sildenafil:Labrasol:Transcutol HP:Captex 300 in the ratio of 1:70:15:15 (w:w:w:w). The solidification process in SNEDDS was performed using HDK N20 Pharma as a solid carrier. RESULTS: The amorphous microspheres appeared spherical with significantly decreased particle size compared to the drug powder. The crystalline microspheres exhibited a rough surface with no major particle-size difference compared with sildenafil powder, indicating that the hydrophilic excipients adhered to the sildenafil crystal. Solid SNEDDS presented a smooth surface, assuming that the oily liquid was adsorbed to the porous solid carrier. According to the physicochemical evaluation, the crystalline state maintained in crystalline microspheres, whereas the crystal state changed to amorphous state in other formulations. Amorphous microspheres, crystalline microspheres and solid SNEDDS produced about 79, 55, 82-fold increased solubility, compared to drug powder. Moreover, the prepared formulations provided a higher dissolution rate (%) and plasma concentration than did the drug powder (performance order; solid SNEDDS ≥ amorphous microspheres ≥ crystalline microspheres > drug powder). Among the formulations, solid SNEDDS demonstrated the highest improvement in oral bioavailability (AUC; 1508.78 ± 343.95 h·ng/mL). CONCLUSION: Therefore, solid SNEDDS could be recommended as an oral dosage form for enhancing the oral bioavailability of sildenafil.


Subject(s)
Drug Delivery Systems , Nanoparticles , Administration, Oral , Biological Availability , Emulsions , Microspheres , Particle Size , Sildenafil Citrate , Solubility , Water
16.
Carbohydr Polym ; 271: 118433, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364573

ABSTRACT

The purpose of this study was to use hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as a novel carrier in solid SNEDDS and solid dispersions to enhance the solubility and oral bioavailability of poorly water-soluble dexibuprofen. The novel dexibuprofen-loaded solid SNEDDS was composed of dexibuprofen, corn oil, polysorbate 80, Cremophor® EL, and HP-ß-CD at a weight ratio of 45/35/50/15/100. This solid SNEDDS spontaneously formed a nano-emulsion with a size of approximately 120 nm. Unlike the conventional solid SNEDDS prepared with colloidal silica as a carrier, this dexibuprofen-loaded solid SNEDDS exhibited a spherical structure. Similar to the dexibuprofen-loaded solid dispersion prepared with HP-ß-CD, the transformation of the crystalline drug to an amorphous state with no molecular interactions were observed in the solid SNEDDS. Compared to the solid dispersion and dexibuprofen powder, solid SNEDDS significantly enhanced drug solubility and AUC. Therefore, HP-ß-CD is a novel potential carrier in SNEDDS for improving the oral bioavailability of dexibuprofen.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Drug Carriers/chemistry , Emulsions/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/pharmacokinetics , Animals , Corn Oil/chemistry , Corn Oil/pharmacokinetics , Drug Carriers/pharmacokinetics , Emulsions/pharmacokinetics , Glycerol/analogs & derivatives , Glycerol/chemistry , Glycerol/pharmacokinetics , Ibuprofen/analogs & derivatives , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Male , Polysorbates/chemistry , Polysorbates/pharmacokinetics , Rats, Sprague-Dawley , Solubility
17.
Int J Nanomedicine ; 16: 5437-5449, 2021.
Article in English | MEDLINE | ID: mdl-34408417

ABSTRACT

PURPOSE: An AE147 peptide-conjugated nanocarrier based on PEGylated liposomes was developed in order to target the metastatic tumors overexpressing urokinase-type plasminogen activator receptor (uPAR), which cancer progression via uPA signaling. Therefore, the AE147 peptide-conjugated nanocarrier system may hold the potential for active targeting of metastatic tumors. METHODS: The AE147 peptide, an antagonist of uPAR, was conjugated to the PEGylated liposomes for targeting metastatic tumors overexpressing uPAR. Docetaxel (DTX), an anticancer drug, was incorporated into the nanocarriers. The structure of the AE147-conjugated nanocarrier, its physicochemical properties, and in vivo biodistribution were evaluated. RESULTS: The DTX-loaded nanocarrier showed a spherical structure, a high drug-loading capacity, and a high colloidal stability. Drug carrying AE147 conjugates were actively taken up by the uPAR-overexpressing MDA-MB-231 cancer cells. In vivo animal imaging confirmed that the AE147-conjugated nanoparticles effectively accumulated at the sites of tumor metastasis. CONCLUSION: The AE147-nanocarrier showed potential for targeting metastatic tumor cells overexpressing uPAR and as a nanomedicine platform for theragnosis applications. These results suggest that this novel nano-platform will facilitate further advancements in cancer therapy.


Subject(s)
Neoplasms , Receptors, Urokinase Plasminogen Activator , Animals , Peptides , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Tissue Distribution , Urokinase-Type Plasminogen Activator
18.
AAPS PharmSciTech ; 22(5): 169, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34080086

ABSTRACT

Lutein has been used as a dietary supplement for the treatment of eye diseases, especially age-related macular degeneration. For oral formulations, we investigated lutein stability in artificial set-ups mimicking different physiological conditions and found that lutein was degraded over time under acidic conditions. To enhance the stability of lutein upon oral intake, we developed enteric-coated lutein solid dispersions (SD) by applying a polymer, hydroxypropyl methylcellulose acetate succinate (HPMCAS-LF), through a solvent-controlled precipitation method. The SD were characterized in crystallinity, morphology, and drug entrapment. In the dissolution profile of lutein SD, a F80 formulation showed resistance toward the acidic environment under simulated gastric conditions while exhibiting a bursting drug release under simulated intestinal conditions. Our results highlight the potential use of HPMCAS-LF as an effective matrix to enhance lutein bioavailability during oral delivery and to provide novel insights into the eye-care supplement industry, with direct benefits for the health of patients.


Subject(s)
Lutein/chemical synthesis , Lutein/pharmacokinetics , Methylcellulose/analogs & derivatives , Biological Availability , Chromatography, High Pressure Liquid/methods , Drug Liberation , Drug Stability , Humans , Methylcellulose/chemical synthesis , Methylcellulose/pharmacokinetics , Polymers/chemical synthesis , Polymers/pharmacokinetics , Solubility , Solvents , X-Ray Diffraction/methods
19.
Biomacromolecules ; 22(2): 723-731, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33280388

ABSTRACT

In this study, the strategy of transient generation of holes in the liposome surface has been shown to enable safe encapsulation of a high-molecular weight antibody (rituximab, Mw ∼140 kDa) within liposomes. These transient holes generated using our magnetoporation method allowed rituximab to safely enter the liposomes, and then the holes were plugged using hyaluronic acid grafted with 3-diethylaminopropylamine (DEAP). In the tumor microenvironment, the resulting liposomal rituximab was destabilized because of the ionization of the DEAP moiety at the acidic pH 6.5, resulting in extensive release of rituximab. Consequently, the rituximab released from the liposomes accumulated at high levels in tumors and bound to the CD20 receptors overexpressed on Burkitt lymphoma Ramos cells. This event led to significant enhancement in tumor cell ablation through rituximab-mediated complement-dependent cytotoxicity and Bcl-2 signaling inhibition-induced cell apoptosis.


Subject(s)
Antineoplastic Agents , Liposomes , Antibodies, Monoclonal, Murine-Derived , Antigens, CD20/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Liposomes/pharmacology , Rituximab/pharmacology
20.
Int J Pharm ; 592: 120039, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33152479

ABSTRACT

The purpose of this study was to compare two types of emulsification techniques in a solid self-nanoemulsifying drug delivery system (SNEDDS); high-pressure homogenisation (HPH) and Shirasu porous glass membrane (SPG). Those two emulsification processes enhanced the solubility, dissolution and oral bioavailability of poorly water-soluble sildenafil base (SB) by producing fine and well-dispersed nanoemulsion droplet. The liquid SNEDDS consisting of Labrasol/Transcutol HP/coconut oil at the weight of 72/18/10, gave the smallest emulsion droplet size among the prepared liquid SNEDDS formulations. Then, the SB-loaded liquid SNEDDS was dissolved in the deionised water and applied to HPH or SPG techniques. Aerosil 200 was suspended as a mesoporous carrier and spray-dried, producing an SB-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of each emulsification process were compared to the solid SNEDDS fabricated without any treatment of additional emulsification. Moreover, the physicochemical properties of all formulations were compared. The crystalline state of the drug in all products was converted to the amorphous state. The solid SNEDDS, subjected to HPH technique, provided fine and well-dispersed nanoemulsion. Additionally, it increasingly improved the drug solubility and dissolution as compared to the others, including SB powder, non-treated (NT) and SPG. Furthermore, it gave improved Cmax and increased AUC compared to SB powder and SPG, indicating HPH enhanced the oral bioavailability of SB the most. Thus, this solid SNEDDS with HPH would be strongly suggested as an oral SB-loaded pharmaceutical product.


Subject(s)
Drug Delivery Systems , Nanoparticles , Administration, Oral , Biological Availability , Emulsions , Particle Size , Porosity , Sildenafil Citrate , Solubility , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...