Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int. microbiol ; 27(2): 361-376, Abr. 2024.
Article in English | IBECS | ID: ibc-232286

ABSTRACT

With the increasingly serious problem of phosphorus deficiency in the subtropical zone, chemical fertilizers are widely used. But it pollutes the environment. Phosphorus-solubilizing microorganisms (PSMs) are referred to as a new solution to this problem. We explored the phosphorus-dissolving characteristics of PSB strains isolated from the rhizosphere soil of Torreya grandis to provide a theoretical basis for selecting the strain for managing phosphorus deficiency in subtropical soils and also provides a more sufficient theoretical basis for the utilization of PSMs. From 84 strains, three strains exhibiting high phosphorus solubility and strong IAA producing capacity were selected through a series of experiments. The phosphate-solubilizing capacity of the three selected strains W1, W74, and W83 were 339.78 mg/L, 332.57 mg/L, and 358.61 mg/L, respectively. Furthermore, W1 showed the strongest IAA secreting capacity of 8.62 mg/L, followed by W74 (7.58 mg/L), and W83 (7.59 mg/L). Determination by metabolites, it was observed that these three strains dissolved phosphorus by secreting a large amount of lactic acid, aromatic acid, and succinic acid. The genome of these PSBs were sequenced and annotated in this study. Our results revealed that PSB primarily promotes their metabolic pathway, especially carbon metabolism, to secrete plenty organic acids for dissolving insoluble phosphorus. (AU)


Subject(s)
Humans , Phosphorus , Antibody-Producing Cells , Lactic Acid , Succinic Acid
2.
Int Microbiol ; 27(2): 361-376, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37453003

ABSTRACT

With the increasingly serious problem of phosphorus deficiency in the subtropical zone, chemical fertilizers are widely used. But it pollutes the environment. Phosphorus-solubilizing microorganisms (PSMs) are referred to as a new solution to this problem. We explored the phosphorus-dissolving characteristics of PSB strains isolated from the rhizosphere soil of Torreya grandis to provide a theoretical basis for selecting the strain for managing phosphorus deficiency in subtropical soils and also provides a more sufficient theoretical basis for the utilization of PSMs. From 84 strains, three strains exhibiting high phosphorus solubility and strong IAA producing capacity were selected through a series of experiments. The phosphate-solubilizing capacity of the three selected strains W1, W74, and W83 were 339.78 mg/L, 332.57 mg/L, and 358.61 mg/L, respectively. Furthermore, W1 showed the strongest IAA secreting capacity of 8.62 mg/L, followed by W74 (7.58 mg/L), and W83 (7.59 mg/L). Determination by metabolites, it was observed that these three strains dissolved phosphorus by secreting a large amount of lactic acid, aromatic acid, and succinic acid. The genome of these PSBs were sequenced and annotated in this study. Our results revealed that PSB primarily promotes their metabolic pathway, especially carbon metabolism, to secrete plenty organic acids for dissolving insoluble phosphorus.


Subject(s)
Phosphorus , Soil , Phosphates/metabolism , Bacteria/genetics , Bacteria/metabolism , Genomics , Soil Microbiology
3.
Curr Res Food Sci ; 5: 2309-2315, 2022.
Article in English | MEDLINE | ID: mdl-36467747

ABSTRACT

Torreya grandis is a characteristic rare economic tree species in subtropical mountainous areas. The kernels of T. grandis have rich content of organic acids, and malate is the predominant organic acid in T. grandis kernels. However, the contents, biosynthesis/metabolism pathway and transcriptional regulation of malate in developing T. grandis kernels remain completely unknown. Here, the organic acid composition in developing T. grandis kernels was first analyzed. The results showed that the content of malate was increased during the maturation T. grandis kernels. A malate synthase (TgMLS) gene might be involved in the accumulation of malate based on transcriptome data, gene expression and enzyme activity analysis. Transient expression of TgMLS in tobacco resulted in the high malate synthase activity and malate content. Furthermore, a basic helix-loop-helix transcription factor (bHLH), TgbHLH87 was identified to positively regulate the TgMLS expression via directly binding the TgMLS promoter. Our finding contributes to mechanism underlying malate accumulation in T. grandis kernels.

4.
J Hazard Mater ; 436: 129181, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35643006

ABSTRACT

Micro/nanoplastic has become an emerging pollutant of global concern. At present, ecotoxic researches on micro/nanoplastics mostly focus on marine aquatic organisms and freshwater algae. Research on the ecological impacts of plastics on higher terrestrial plants, especially on forest plants, is relatively limited. Torreya grandis cv. Merrillii, a species of conifer in the family Taxaceae, is a unique and economically valuable tree species in China. The physiological and biochemical responses of T. grandis seedlings to polystyrene nanoplastics (PSNPs) with a diameter of 100 nm were systematically studied inthe present study. The results showed that nanoplastics enhanced the accumulation of the thiobarbituric acid reactive substance and the activities of catalase and peroxidase. The concentrations of iron, sulfur, and zinc were reduced after nanoplastic exposure. PSNP treatment had an important effect on a series of chemical and genetic indicators of T. grandis, includingantioxidants, small RNA, gene transcription, protein expressions, and metabolite accumulation. Multi-omic analysis revealed that PSNPs modulate terpenoid- and flavonoid-biosynthesis pathways by regulating small RNA transcription and protein expression. Our study provided novelty insights into the responses of forest plants to nanoplastic treatment.


Subject(s)
Environmental Pollutants , Taxaceae , Antioxidants/metabolism , Microplastics/toxicity , Polystyrenes/toxicity , RNA , Taxaceae/chemistry , Taxaceae/genetics , Taxaceae/metabolism
5.
Front Plant Sci ; 13: 908129, 2022.
Article in English | MEDLINE | ID: mdl-35720604

ABSTRACT

Nitrogen enters the terrestrial ecosystem through deposition. High nitrogen levels can affect physical and chemical properties of soil and inhibit normal growth and reproduction of forest plants. Nitrogen modulates the composition of soil microorganisms. Strigolactones inhibits plant branching, promotes root growth, nutrient absorption, and promotes arbuscular fungal mycelia branching. Plants are subjected to increasing atmospheric nitrogen deposition. Therefore, it is imperative to explore the relationship between strigolactone and nitrogen deposition of plants and abundance of soil microorganisms. In the present study, the effects of strigolactone on genetic responses and soil microorganisms of Torreya grandis, under simulated nitrogen deposition were explored using high-throughput sequencing techniques. T. grandis is a subtropical economic tree species in China. A total of 4,008 differentially expressed genes were identified in additional N deposition and GR24 treatment. These genes were associated with multiple GO terms and metabolic pathways. GO enrichment analysis showed that several DEGs were associated with enrichment of the transporter activity term. Both additional nitrogen deposition and GR24 treatment modulated the content of nutrient elements. The content of K reduced in leaves after additional N deposition treatment. The content of P increased in leaves after GR24 treatment. A total of 20 families and 29 DEGs associated with transporters were identified. These transporters may be regulated by transcription factors. A total of 1,402,819 clean reads and 1,778 amplicon sequence variants (ASVs) were generated through Bacterial 16S rRNA sequencing. Random forest classification revealed that Legionella, Lacunisphaera, Klebsiella, Bryobacter, and Janthinobacterium were significantly enriched in the soil in the additional N deposition group and the GR24 treatment group. Co-occurrence network analysis showed significant differences in composition of soil microbial community under different treatments. These results indicate a relationship between N deposition and strigolactones effect. The results provide new insights on the role of strigolactones in plants and composition of soil microorganisms under nitrogen deposition.

6.
Food Chem ; 384: 132454, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35228003

ABSTRACT

The seeds of Torreya grandis are necessary to go through a ripening process, which eventually leads to nutrition conversion and the production of edible nuts. However, the molecular basis of nutrition conversion remains unclear. Here, transcriptome sequencing was performed on seeds treated with different temperature and humidity. A total of 881 unigenes related to nutrition conversion were identified. The correlations between nutrient content and gene expression suggested that sucrose phosphate synthase (SPS), dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex (DLST), glycerol-3-phosphate acyltransferase (GPAT) and Pyruvate kinase (PK) may play key roles in nutrition conversion. Transient over-expression of TgDLST, TgPK and TgGPAT in tobacco leaves promoted nutritional conversion. Moreover, enzyme activity analysis indicated that diacylglycerol acyltransferase (DGAT) and pyruvate dehydrogenase (PDH) activities may also accelerate the nutritional conversion. This study uncovers the molecular basis of nutrition conversion in T. grandis seeds, which critical for shortening the time of nutrition conversion.


Subject(s)
Nuts , Taxaceae , Humidity , Nuts/chemistry , Plant Leaves , Seeds/genetics , Taxaceae/chemistry
7.
Food Chem ; 379: 132078, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35063846

ABSTRACT

Torreya grandis has high economic and nutritional value due to the high nutrients in its kernels. The kernels of different development stages vary enormously in their amino acids content. However, the molecular basis and the regulatory mechanism of amino acid biosynthesis remain unclear. Here, transcriptome and metabolome analysis were performed. Correlation analysis result showed that 4 unigenes were significantly and positively correlated with at least 10 amino acids. The full length CDS of 2 unigenes (TgDAHP2 and TgASA1) were successfully cloned from the 4 unigenes for DAHP, ASA and CITS. Subcelluar localization analysis showed that both TgDAHP2 and TgASA1 were localized to the chloroplast. Overexpression of TgDAHP2 and TgASA1 in Arabidopsis can greatly increase the content of most amino acids. Moreover, 3 transcription factors were found to positively regulate the expression of TgASA1. This research contributes to understand the molecular regulatory mechanisms of amino acid biosynthesis in T. grandis.


Subject(s)
Taxaceae , Transcriptome , Amino Acids/genetics , Chloroplasts , Metabolome
8.
Food Chem ; 374: 131558, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34794838

ABSTRACT

The kernel of Torreya grandis (T. grandis) is a rare nut with a variety of bioactive compounds. Flavonoids are a very important class of bioactive compounds with high antioxidant activity in T. grandis kernels. However, the flavonoid compositions which mainly contribute to antioxidant capacity and the molecular basis of flavonoid biosynthesis in T. grandis remain unclear. Here, transcriptome sequencing and metabolomics analysis for kernels were performed. In total, 124 flavonoids were identified. Among them, 9 flavonoids were highly correlated with antioxidant activity. Furthermore, unigenes encoding CHS, DFR and ANS showed significant correlation with the 9 flavonoids. Transient overexpression of TgDFR1 in tobacco leaves resulted in increased antioxidant activity. Moreover, several transcription factors from MYB, bHLH and bZIP families were identified by co-expression assay, suggesting that they may regulate flavonoid biosynthesis. Our findings provide a molecular basis and new insights into the flavonoid biosynthesis in T. grandis kernels.


Subject(s)
Taxaceae , Transcriptome , Flavonoids , Gene Expression Regulation, Plant , Humans , Metabolomics , Plant Proteins/metabolism , Transcription Factors/metabolism
9.
Genomics ; 113(5): 3163-3173, 2021 09.
Article in English | MEDLINE | ID: mdl-34246692

ABSTRACT

As one of the main vegetable crops cultivated in the world, the tomato has advantages of high yield and economic benefits, and plays an important role in promoting farmers' income and social and economic growth. However, lateral branches during the growth process of tomato consume considerable nutrients and reduce the yield of tomato. Phytohormones such as strigolactone and auxin can inhibit the formation of lateral branches. However, the mechanism of their interaction is not particularly clear. To better understand the effects of exogenous strigolactone and auxin on tomato, proteome analyses of tomato shoots treated with exogenous GR24 and indole acetic acid were performed using an integrated approach involving tandem mass tag (TMT) labeling and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). We identified 6685 proteins, of which 5822 contained quantitative information. Many differentially expressed proteins (DEPs) were found in different comparisons, including 415, 148, and 130 DEPs in GR24 vs mock, IAA vs mock, and GR24 + IAA vs mock comparisons, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 'photosynthesis - antenna proteins' were significantly enriched in three treatments. Our data can help reveal the interaction between strigolactone and auxin in tomato seedlings.


Subject(s)
Solanum lycopersicum , Chromatography, Liquid , Gene Expression Regulation, Plant , Heterocyclic Compounds, 3-Ring , Indoleacetic Acids/metabolism , Lactones , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Tandem Mass Spectrometry
10.
Plant J ; 101(6): 1448-1461, 2020 03.
Article in English | MEDLINE | ID: mdl-31680357

ABSTRACT

The rapid selection of salinity-tolerant crops to increase food production in salinized lands is important for sustainable agriculture. Recently, high-throughput plant phenotyping technologies have been adopted that use plant morphological and physiological measurements in a non-destructive manner to accelerate plant breeding processes. Here, a hyperspectral imaging (HSI) technique was implemented to monitor the plant phenotypes of 13 okra (Abelmoschus esculentus L.) genotypes after 2 and 7 days of salt treatment. Physiological and biochemical traits, such as fresh weight, SPAD, elemental contents and photosynthesis-related parameters, which require laborious, time-consuming measurements, were also investigated. Traditional laboratory-based methods indicated the diverse performance levels of different okra genotypes in response to salinity stress. We introduced improved plant and leaf segmentation approaches to RGB images extracted from HSI imaging based on deep learning. The state-of-the-art performance of the deep-learning approach for segmentation resulted in an intersection over union score of 0.94 for plant segmentation and a symmetric best dice score of 85.4 for leaf segmentation. Moreover, deleterious effects of salinity affected the physiological and biochemical processes of okra, which resulted in substantial changes in the spectral information. Four sample predictions were constructed based on the spectral data, with correlation coefficients of 0.835, 0.704, 0.609 and 0.588 for SPAD, sodium concentration, photosynthetic rate and transpiration rate, respectively. The results confirmed the usefulness of high-throughput phenotyping for studying plant salinity stress using a combination of HSI and deep-learning approaches.


Subject(s)
High-Throughput Screening Assays/methods , Hyperspectral Imaging , Machine Learning , Salt-Tolerant Plants/physiology , Abelmoschus/metabolism , Abelmoschus/physiology , Crop Production/methods , Crops, Agricultural/metabolism , Crops, Agricultural/physiology , Deep Learning , Genetic Association Studies , Hyperspectral Imaging/methods , Phenotype , Salt Stress , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism
11.
PLoS One ; 14(12): e0226752, 2019.
Article in English | MEDLINE | ID: mdl-31887119

ABSTRACT

Presently, concern regarding the effects of selenium (Se) on the environment and organisms worldwide is increasing. Too much Se in the soil is harmful to plants. In this study, Illumina RNA sequencing and the untargeted metabolome of control and Se-treated celery seedlings were analyzed. In total, 297,911,046 clean reads were obtained and assembled into 150,218 transcripts (50,876 unigenes). A total of 36,287 unigenes were annotated using different databases. Additionally, 8,907 differentially expressed genes, including 5,319 up- and 3,588 downregulated genes, were identified between mock and Se-treated plants. "Phenylpropanoid biosynthesis" was the most enriched KEGG pathway. A total of 24 sulfur and selenocompound metabolic unigenes were differentially expressed. Furthermore, 1,774 metabolites and 237 significant differentially accumulated metabolites were identified using the untargeted metabolomic approach. We conducted correlation analyses of enriched KEGG pathways of differentially expressed genes and accumulated metabolites. Our findings suggested that candidate genes and metabolites involved in important biological pathways may regulate Se tolerance in celery. The results increase our understanding of the molecular mechanism responsible for celery's adaptation to Se stress.


Subject(s)
Apium/metabolism , Gene Expression Profiling , Metabolomics , Selenium/pharmacology , Apium/drug effects , Apium/genetics , Drug Tolerance , Gene Expression Regulation, Plant/drug effects , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Sequence Analysis, RNA , Stress, Physiological/drug effects
12.
PeerJ ; 7: e8020, 2019.
Article in English | MEDLINE | ID: mdl-31799069

ABSTRACT

Selenium (Se) is an essential trace element for human and animal health. Se fertilizer has been used to increase the Se content in crops to meet the Se requirements in humans and animals. To address the challenge of Se poisoning in plants, the mechanisms underlying Se-induced stress in plants must be understood. Here, to elucidate the effects of Se stress on the protein levels in pepper, we used an integrated approach involving tandem mass tag labeling, high performance liquid chromatography fractionation, and mass spectrometry-based analysis. A total of 4,693 proteins were identified, 3,938 of which yielded quantitative information. Among them, the expression of 172 proteins was up-regulated, and the expression of 28 proteins was down-regulated in the Se/mock treatment comparison. According to the above data, we performed a systematic bioinformatics analysis of all identified proteins and differentially expressed proteins (DEPs). The DEPs were most strongly associated with the terms "metabolic process," "posttranslational modification, protein turnover, chaperones," and "protein processing in endoplasmic reticulum" according to Gene Ontology, eukaryotic orthologous groups classification, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, respectively. Furthermore, several heat shock proteins were identified as DEPs. These results provide insights that may facilitate further studies on the pepper proteome expressed downstream of the Se stress response. Our data revealed that the responses of pepper to Se stress involve various pathways.

13.
BMC Genomics ; 20(1): 381, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31096913

ABSTRACT

BACKGROUND: Salinization seriously threatens land use efficiency and crop yields across the world. Understanding the mechanisms plants use to protect against salt stress will help breeders develop salt-tolerant vegetable crops. Okra (Abelmoschus esculentus L.) is an important vegetable crop of the mallow family, which is now cultivated in warm regions worldwide. To understand the effects of salt stress on the protein level of okra, a comparative proteomic analysis of okra seedlings grown in the presence of 0 or 300 mmol L- 1 NaCl treatment was performed using an integrated approach of Tandem Mass Tag labeling and LC-MS/MS integrated approach. RESULTS: A total of 7179 proteins were identified in this study, for which quantitative information was available for 5774 proteins. In the NaCl/control comparison group, there were 317 differentially expressed proteins (DEPs), of which 165 proteins were upregulated and 152 proteins downregulated in the presence of NaCl. Based on the above data, we carried out a systematic bioinformatics analysis of proteins with information, including protein annotation, domain characteristics, functional classification, and pathway enrichment. Enriched gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEPs were most strongly associated with "response to stress" and "protein processing in endoplasmic reticulum". Furthermore, several heat shock proteins were identified as DEPs. CONCLUSIONS: This information provides a reference direction for further research on the okra proteome in the downstream of the salt stress response, with our data revealing that the responses of okra to salt stress involves by various pathways.


Subject(s)
Abelmoschus/metabolism , Computational Biology/methods , Plant Proteins/metabolism , Proteomics/methods , Salt Stress , Seedlings/metabolism , Abelmoschus/growth & development , Protein Interaction Maps , Seedlings/growth & development
14.
Int J Mol Sci ; 20(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871161

ABSTRACT

Soil salinization is a major environmental stresses that seriously threatens land use efficiency and crop yields worldwide. Although the overall response of plants to NaCl has been well studied, the contribution of protein phosphorylation to the detoxification and tolerance of NaCl in okra (Abelmoschus esculentus L.) seedlings is unclear. The molecular bases of okra seedlings' responses to 300 mM NaCl stress are discussed in this study. Using a combination of affinity enrichment, tandem mass tag (TMT) labeling and high-performance liquid chromatography⁻tandem mass spectrometry analysis, a large-scale phosphoproteome analysis was performed in okra. A total of 4341 phosphorylation sites were identified on 2550 proteins, of which 3453 sites of 2268 proteins provided quantitative information. We found that 91 sites were upregulated and 307 sites were downregulated in the NaCl/control comparison group. Subsequently, we performed a systematic bioinformatics analysis including gene ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation. The latter revealed that the differentially expressed proteins were most strongly associated with 'photosynthesis antenna proteins' and 'RNA degradation'. These differentially expressed proteins probably play important roles in salt stress responses in okra. The results should help to increase our understanding of the molecular mechanisms of plant post-translational modifications in response to salt stress.


Subject(s)
Abelmoschus/metabolism , Phosphorylation/physiology , Proteome/metabolism , Salt Stress/physiology , Seedlings/metabolism , Abelmoschus/genetics , Computational Biology/methods , Down-Regulation/genetics , Down-Regulation/physiology , Gene Ontology , Genes, Plant/genetics , Genes, Plant/physiology , Genome, Plant/genetics , Genome, Plant/physiology , Phosphorylation/genetics , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Proteome/genetics , Proteomics/methods , Salt Stress/genetics , Seedlings/genetics , Up-Regulation/genetics , Up-Regulation/physiology
15.
Plant Cell Environ ; 42(4): 1125-1138, 2019 04.
Article in English | MEDLINE | ID: mdl-30399648

ABSTRACT

In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock-down lines, osaux3-1 and osaux3-2, in wild-type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3-1 and osaux3-2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up-regulated in the root apex under aluminium (Al) stress, and osaux3-2 is insensitive to Al treatments. Furthermore, 1-naphthylacetic acid accented the sensitivity of WT/DJ and osaux3-2 to respond to Al stress. Auxin concentrations, Al contents, and Al-induced reactive oxygen species-mediated damage in osaux3-2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al-induced inhibition of root growth. This study uncovers a novel pathway alleviating Al-induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al-tolerant rice species.


Subject(s)
Aluminum/toxicity , Oryza/growth & development , Plant Proteins/physiology , Plant Roots/growth & development , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Indoleacetic Acids/metabolism , Oryza/drug effects , Oryza/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction
16.
PLoS One ; 13(9): e0204873, 2018.
Article in English | MEDLINE | ID: mdl-30252893

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0201124.].

17.
PLoS One ; 13(7): e0201124, 2018.
Article in English | MEDLINE | ID: mdl-30044859

ABSTRACT

Auxin and strigolactone (SL) are two important phytohormones involved in shoot branching and morphology. Tomato (Solanum lycopersicum L.), a member of the Solanaceae family, is one of the most popular food crops with high economic value in the world. To seek a better understanding of the responses to exogenous hormones, transcriptome analyses of the tomato shoots treated with exogenous auxin and SL, separately or together, were performed. A total of 2326, 260 and 1379 differential expressed genes (DEGs) were identified under the IAA, GR24 and IAA+GR24 treatments, respectively. Network analysis pointed out two enriched interaction clusters, including "ethylene biosynthesis" and "photosynthesis". Several ethylene biosynthesis and metabolism-related genes were up-regulated under both IAA and IAA+GR24 treatments, suggesting their involvement in the regulation of ethylene biosynthesis. Besides, auxin-SLs-triggered the expression of several CAB genes may lead to systemic increases in the induction of photosynthesis. Several auxin-activated metabolic pathways could be reduced by the GR24 treatment, indicated that the crosstalk between auxin and SLs may be involved in the metabolic regulation of tomato. Further analysis showed that SLs affect the responses of tomato shoots to auxin by inducing the expression of a series of auxin downstream genes. On the other hand, auxin regulated the biosynthesis of SLs by affecting the genes in the "Carotenoid biosynthesis" pathway. Our data will give us an opportunity to reveal the crosstalk between auxin and SLs in the shoots of tomato.


Subject(s)
Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Shoots/metabolism , Solanum lycopersicum/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Solanum lycopersicum/drug effects , Plant Growth Regulators/pharmacology , Plant Shoots/drug effects , Seedlings/drug effects , Seedlings/metabolism , Transcriptome/drug effects
18.
Front Genet ; 9: 192, 2018.
Article in English | MEDLINE | ID: mdl-29910824

ABSTRACT

Physalis is an important genus in the Solanaceae family. It includes many species of significant medicinal value, edible value, and ornamental value. However, many Physalis species are easily confused because of their similar morphological traits, which hinder the utilization and protection of Physalis resources. Therefore, it is necessary to create fast, sensitive, and reliable methods for the Physalis species authentication. Intended for that, in this study, species-specific sequence-characterized amplified region (SCAR) markers were developed for accurate identification of the closely related Physalis species P. angulata, P. minima, P. pubescens, and P. alkekengi var. franchetii, based on a simple and novel marker system, start codon targeted (SCoT) marker. A total of 34 selected SCoT primers yielded 289 reliable SCoT loci, of which 265 were polymorphic. Four species-specific SCoT fragments (SCoT3-1404, SCoT3-1589, SCoT5-550, and SCoT36-520) from Physalis species were successfully identified, cloned, and sequenced. Based on these selected specific DNA fragments, four SCAR primers pairs were developed and named ST3KZ, ST3MSJ, ST5SJ, and ST36XSJ. PCR analysis of each of these primer pairs clearly demonstrated a specific amplified band in all samples of the target Physalis species, but no amplification was observed in other Physalis species. Therefore, the species-specific SCAR primer pairs developed in this study could be used as powerful tools that can rapidly, effectively, and reliably identify and differentiate Physalis species.

19.
Front Plant Sci ; 9: 468, 2018.
Article in English | MEDLINE | ID: mdl-29686693

ABSTRACT

The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique.

20.
Biotechnol Biofuels ; 11: 88, 2018.
Article in English | MEDLINE | ID: mdl-29619084

ABSTRACT

BACKGROUND: In the pursuit of sources of energy, biofuel pellet is emerging as a promising resource because of its easy storage and transport, and lower pollution to the environment. The composition of biomass has important implication for energy conversion processing strategies. Current standard chemical methods for biomass composition are laborious, time-consuming, and unsuitable for high-throughput analysis. Therefore, a reliable and efficient method is needed for determining lignocellulose composition in biomass and so to accelerate biomass utilization. Here, near-infrared hyperspectral imaging (900-1700 nm) together with chemometrics was used to determine the lignocellulose components in different types of biofuel pellets. Partial least-squares regression and principal component multiple linear regression models based on whole wavelengths and optimal wavelengths were employed and compared for predicting lignocellulose composition. RESULTS: Out of 216 wavelengths, 20, 10 and 17 were selected by the successive projections algorithm for cellulose, hemicellulose and lignin, respectively. Three simple and satisfactory prediction models were constructed, with coefficients of determination of 0.92, 0.84 and 0.71 for cellulose, hemicellulose and lignin, respectively. The relative parameter distributions were quantitatively visualized through prediction maps by transferring the optimal models to all pixels on the hyperspectral image. CONCLUSIONS: Hence, the overall results indicated that hyperspectral imaging combined with chemometrics offers a non-destructive and low-cost method for determining biomass lignocellulose components, which would help in developing a simple multispectral imaging instrument for biofuel pellets online measurement and improving the production management.

SELECTION OF CITATIONS
SEARCH DETAIL
...