Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Natl Sci Rev ; 11(8): nwae207, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39007002

ABSTRACT

Thickening of electrodes is crucial for maximizing the proportion of active components and thus improving the energy density of practical energy storage cells. Nevertheless, trade-offs between electrode thickness and electrochemical performance persist because of the considerably increased ion transport resistance of thick electrodes. Herein, we propose accelerating ion transport through thick and dense electrodes by establishing an immobile polyanionic backbone within the electrode pores; and as a proof of concept, gel polyacrylic electrolytes as such a backbone are in situ synthesized for supercapacitors. During charge and discharge, protons rapidly hop among RCOO- sites for oriented transport, fundamentally reducing the effects of electrode tortuosity and polarization resulting from concentration gradients. Consequently, nearly constant ion transport resistance per unit thickness is achieved, even in the case of a 900-µm-thick dense electrode, leading to unprecedented areal capacitances of 14.85 F cm-2 at 1 mA cm-2 and 4.26 F cm-2 at 100 mA cm-2. This study provides an efficient method for accelerating ion transport through thick and dense electrodes, indicating a significant solution for achieving high energy density in energy storage devices, including but not limited to supercapacitors.

2.
Phytomedicine ; 130: 155705, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38761776

ABSTRACT

BACKGROUND: Senolytic combination of dasatinib and quercetin (DQ) is the most studied senolytics drugs used to treat various age-related diseases. However, its protective activity against diabetic kidney disease (DKD) and underlying mechanisms are uncertain. PURPOSE: To investigate the functions and potential mechanisms of the senolytics DQ on DKD. METHODS: Diabetic db/db mice were administrated DQ or transfected with over-expressed PPARα or shPPARα vector. The positive control group was administered irbesartan. Renal function and fibrotic changes in kidney tissue were tested. Single-cell RNA-seq (scRNA-seq) was conducted to analyze the differential transcriptome between the diabetic and control mice. Molecular docking simulation was used to assess the combination of DQ and potential factors. Moreover, tubular epithelial cells under high-glucose (HG) conditions were incubated with DQ and transfected with or without over-expressed PPARα/siPPARα vector. RESULTS: DQ significantly improved renal function, histopathological and fibrotic changes, alleviated lipid deposition, and increased ATP levels in mice with DKD. DQ reduced multiple fatty acid oxidation (FAO) pathway-related proteins and up-regulated PPARα in db/db mice. Overexpression of PPARα upregulated the expression of PPARα-targeting downstream FAO pathway-related proteins, restored renal function, and inhibited renal fibrosis in vitro and in vivo. Moreover, molecular docking and dynamics simulation analyses indicated the nephroprotective effect of DQ via binding to PPARα. Knockdown of PPARα reversed the effect of DQ on the FAO pathway and impaired the protective effect of DQ during DKD. CONCLUSION: For the first time, DQ was found to exert a renal protective effect by binding to PPARα and attenuating renal damage through the promotion of FAO in DKD.


Subject(s)
Dasatinib , Diabetic Nephropathies , Molecular Docking Simulation , PPAR alpha , Quercetin , Animals , Diabetic Nephropathies/drug therapy , Quercetin/pharmacology , PPAR alpha/metabolism , Mice , Dasatinib/pharmacology , Male , Kidney/drug effects , Kidney/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications
3.
J Nanobiotechnology ; 22(1): 58, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341574

ABSTRACT

Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, and found that one of the constructs (MP-5ff) showed high trimerization efficiency, good conformational homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff), we then engineered a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs of the Omicron S protein in a synergistic form, locking them in the "3-RBD-up" conformation that could block human receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses.


Subject(s)
COVID-19 , Humans , Micropeptides , SARS-CoV-2 , Binding Sites , Antibodies, Neutralizing , Antibodies, Viral
4.
Small ; 20(1): e2303832, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670542

ABSTRACT

Protonation has been considered essential for the pseudocapacitive energy storage of polyaniline (PANI) for years, as proton doping in PANI chains not only activates electron transport pathways, but also promotes the proceeding of redox reactions. Rarely has the ability for PANI of storing energy without protonation been investigated, and it remains uncertain whether PANI has pseudocapacitive charge storage properties in an alkaline electrolyte. Here, this work first demonstrates the pseudocapacitive energy storage for PANI without protonation using a PANI/graphene composite as a model material in an alkaline electrolyte. Using in situ Raman spectroscopy coupled with electrochemical quartz crystal microbalance (EQCM) measurements, this work determines the formation of -N= group over potential on a PANI chain and demonstrates the direct contribution of OH- in the nonprotonation type of oxidation reactions. This work finds that the PANI/graphene composite in an alkaline electrolyte has excellent cycling stability with a wider operation voltage of 1 V as well as a slightly higher specific capacitance than that in an acidic electrolyte. The findings provide a new perspective on pseudocapacitive energy storage of PANI-based composites, which will influence the selection of electrolytes for PANI materials and expand their application in energy storage fields.

5.
Article in English | MEDLINE | ID: mdl-37917907

ABSTRACT

Background: External ventricular drainage (EVD), a widely used clinical procedure, faces slow translation of knowledge into practice due to practical barriers. The scarcity of high-quality data in the past EVD management and neurocritical care research compounds the challenge. Objective: This study aims to investigate the current status of adult external ventricular drainage care among neurosurgical nurses, delineate nursing priorities and challenges, and explore the necessity for establishing standardized guidelines for external ventricular drainage care. Methods: We conducted a systematic literature search to identify existing clinical guidelines, systematic reviews, evidence summaries, and expert consensus on adult external ventricular drainage care. We developed an electronic questionnaire titled "Survey on the Current Status of Adult External Ventricular Drainage Care" based on our search results. We distributed it to certified registered neurosurgical nurses working in the top 20 neurosurgery hospitals, per the 2022 Fudan Hospital Ranking published by the Institute of Hospital Management at Fudan University. Results: Effective control of drainage speed and total volume is a crucial aspect of nursing care. Existing guidelines primarily emphasize infection prevention in the context of complication care. However, it was observed that nursing staff exhibited limited knowledge concerning the total volume (58.7%) and rate of cerebrospinal fluid drainage (50.8%), as well as the management of complications (56.7%). Factors influencing the extent of nursing knowledge related to external ventricular drainage care include levels of education (P = .022), professional titles (P = .004), department assignments (P < .001), and the completion of relevant training (P = .01). Conclusions: Establishing standardized guidelines for external ventricular drainage care is imperative to bridge the gap between existing evidence and clinical practice.

6.
Free Radic Biol Med ; 209(Pt 1): 171-184, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37852548

ABSTRACT

Mitochondrial dysfunction is implied as a crucial factor in age-related chronic kidney disease. It is confirmed that Gli-like transcription factor 1 (GLIS1) is involved in age-related renal fibrosis, however, the correlation between mitochondrial disturbances and GLIS1-driven kidney aging are not clearly clarified. Thus, we investigated the regulatory mechanism of GLIS1 in the homeostasis of mitochondrial quality control both in vivo and in vitro. The lower expression of GLIS1 was identified in natural and accelerated kidney aged models, accompanied by the dysfunctions of mitochondrial quality control, including enhanced mitochondrial fission, reduced mitochondrial biogenesis and mitophagy, whereas, GLIS1 could maintain mitochondrial stability by interacting with peroxisome proliferator-activated receptor γ coactivator-1α (PGC1-α). Additionally, the over-expressed GLIS1 inhibited extracellular matrix accumulation and alleviated renal fibrosis while siGLIS1 inhibited PGC1-α transcription, as well as affecting its mitochondria-protective functions. Collectively, we demonstrated that GLIS1 mediated mitochondrial quality control through targeting PGC1-α in kidney aging, which might be a promising therapeutic target for attenuating cell senescence and age-related renal fibrosis.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Humans , Aged , Kidney/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Fibrosis , Cellular Senescence , Renal Insufficiency, Chronic/pathology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Ann Clin Biochem ; 60(3): 199-207, 2023 05.
Article in English | MEDLINE | ID: mdl-36750430

ABSTRACT

BACKGROUND: Recalibration using serum pools assigned by higher-order reference methods had been demonstrated to be effective in improving the agreement among insulin immunoassays. To promote the application of serum pools in insulin harmonization, this study analyzed serum pools' commutability between insulin immunoassays, and their short- and long-term stability at different temperatures. The agreement between commonly used immunoassays was also evaluated. METHODS: Insulin in 69 individual serum samples, 10 serum pools, and three EQA samples (lyophilized powder of serum pools) were detected by six widely used immunoassays. The commutability of serum pools and EQA samples was evaluated according to the IFCC-recommended approach. Serum pools' stability at different temperatures was investigated by placing them at various temperatures for varying lengths of time. Individual serum samples' results were analyzed using the Bland-Altman and Passing and Bablok regression analyses. RESULTS: Serum pools were commutable among most assays, the EQA samples-lyophilized serum pools-were non-commutable among most assays. Serum pools can be stably stored at -20°C and -80°C for at least one year, but can only be stably stored at room temperature for twenty-four hours. Significant relative differences were observed among assays. Recalibration using serum pools can only improve the assays' agreement at middle and high insulin levels, but not at low levels. CONCLUSIONS: Serum pools were commutable and stable for insulin measurement and can be used in insulin harmonization. The existing EQA materials were non-commutable between most assays, and other EQA materials, such as serum pools, should be studied.


Subject(s)
Biological Assay , Insulin , Humans , Immunoassay , Reference Standards
8.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 211-228, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35196225

ABSTRACT

Differentiable ARchiTecture Search, i.e., DARTS, has drawn great attention in neural architecture search. It tries to find the optimal architecture in a shallow search network and then measures its performance in a deep evaluation network. The independent optimization of the search and evaluation networks, however, leaves a room for potential improvement by allowing interaction between the two networks. To address the problematic optimization issue, we propose new joint optimization objectives and a novel Cyclic Differentiable ARchiTecture Search framework, dubbed CDARTS. Considering the structure difference, CDARTS builds a cyclic feedback mechanism between the search and evaluation networks with introspective distillation. First, the search network generates an initial architecture for evaluation, and the weights of the evaluation network are optimized. Second, the architecture weights in the search network are further optimized by the label supervision in classification, as well as the regularization from the evaluation network through feature distillation. Repeating the above cycle results in a joint optimization of the search and evaluation networks and thus enables the evolution of the architecture to fit the final evaluation network. The experiments and analysis on CIFAR, ImageNet and NATS-Bench [95] demonstrate the effectiveness of the proposed approach over the state-of-the-art ones. Specifically, in the DARTS search space, we achieve 97.52% top-1 accuracy on CIFAR10 and 76.3% top-1 accuracy on ImageNet. In the chain-structured search space, we achieve 78.2% top-1 accuracy on ImageNet, which is 1.1% higher than EfficientNet-B0. Our code and models are publicly available at https://github.com/microsoft/Cream.

9.
BMC Cancer ; 22(1): 1350, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36564767

ABSTRACT

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of prostate cancer, and the molecular mechanism driving mCRPC progression has not yet been fully elucidated. Immunotherapies such as chimeric antigen receptor, T-cell therapy and immune checkpoint blockade have exerted promising antitumor effects in hematological and solid tumor malignancies; however, no encouraging responses have been observed against mCRPC. The deubiquitinase USP13 functions as a tumor suppressor in many human cancers, as it sustains the protein stability of PTEN and TP53; however, its role in prostate cancer (PCa) and involvement in DNA damage and AR signaling remain unclear. In the current study, we explored the prognostic value of USP13 in PCa based on the TCGA database, and we analyzed the expression of USP13 in PCa tissues and adjacent normal tissues based on TCGA and our cohort. The results suggested that USP13 is overexpressed in PCa tumors and has the potential to be an independent biomarker for the overall survival of PCa patients. Additionally, enrichment analysis indicated that USP13 may participate in the AR pathway and PI3k/Wnt signaling, which are closely related to PCa progression. We also observed a significant correlation between the expression of USP13 and AR-related genes, DDR genes and mismatch repair genes based on the TCGA_PRAD dataset, which further supported the critical role of USP13 in AR activation and the DNA damage response of PCa. USP13 was also found to be enriched in protein neddylation, and expression of USP13 was significantly associated with infiltration of immune cells and expression of immunomodulators. Taken together, our study revealed a key role of USP13 in contributing to PCa progression by participating in multiple oncogenic signaling pathways, the DNA damage response and the immunosuppressive tumor microenvironment. Targeting USP13 may inhibit tumor growth and provide additional benefits in cooperation with DDR inhibitors and immunotherapy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Peptide Hydrolases , Ubiquitin/genetics , Prostatic Neoplasms/metabolism , Endopeptidases/genetics , DNA Damage/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Tumor Microenvironment , Ubiquitin-Specific Proteases
10.
Oxid Med Cell Longev ; 2022: 1747604, 2022.
Article in English | MEDLINE | ID: mdl-35864871

ABSTRACT

The incidence of prostate cancer (PC) is growing rapidly worldwide, and studies uncovering the molecular mechanisms driving the progression and modulating the immune infiltration and antitumor immunity of PC are urgently needed. The long noncoding RNA SNHG family has been recognized as a prognostic marker in cancers and contributes to the progression of multiple cancers, including PC. In this study, we aimed to clarify the prognostic values and underlying mechanisms of SNHGs in promoting the progression and modulating the tumor microenvironment of PC through data mining based on The Cancer Genome Atlas (TCGA) database. We identified that within the SNHG family, SNHG17 was most correlated with the overall survival of PC patients and could act as an independent predictor. Moreover, we constructed a competitive endogenous RNA (ceRNA) network by which SNHG17 promotes progression and potentially inhibits the immune infiltration and immune response of prostate cancer. By interacting with miR-23a-3p/23b-3p/23c, SNHG17 upregulates the expression of UBE2M and OTUB1, which have been demonstrated to play critical roles in the tumorigenesis of human cancers, more importantly promoting cancer cell immunosuppression and resistance to cytotoxic stimulation. Finally, we examined the correlation between SNHG17 expression and the clinical progression of PC patients based on our cohort of 52 PC patients. We also verified the SNHG17/miR-23a/OTUB1 axis in RV-1 and PC-3 cells by dual luciferase and RIP assays, and we further identified that SNHG17 promoted cellular invasive capacity by modulating OTUB1. In summary, the current study conducted a ceRNA-based SNHG17-UBE2M/OTUB1 axis and indicated that SNHG17 might be a novel prognostic factor associated with the progression, immunosuppression, and cytotoxic resistance of PC.


Subject(s)
MicroRNAs , Prostatic Neoplasms , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Microenvironment/genetics , Ubiquitin-Conjugating Enzymes/genetics
11.
Urol Int ; 106(4): 376-386, 2022.
Article in English | MEDLINE | ID: mdl-34515260

ABSTRACT

BACKGROUND: Activins and inhibins are structurally related dimeric glycoprotein hormones belonging to the transforming growth factor-ß superfamily but whether they are also involved in malignancy is far from clear. No study has reported the expression of INHBE in kidney cancer. The purpose of this study was to examine the expressions of INHBE in the tumor tissue of patients with clear-cell renal cell carcinoma (ccRCC) and to explore the pathologic significance. METHODS: The INHBE mRNA expression in the tumor tissue of ccRCC patients was analyzed by using RNA sequencing data from the TCGA database. To examine the expression of inhibin ßE protein, 241 ccRCC patients were recruited and immunohistochemistry was performed on the tumor tissue of these patients along with 39 normal renal samples. The association between the inhibin ßE expression level and patient's clinicopathological indices was evaluated. RESULTS: In the normal renal tissue, inhibin ßE was found to be expressed mainly by renal tubular epithelial cells. In the tumor tissue, inhibin ßE was expressed mainly in cancer cells. The expressions of INHBE mRNA and protein in the tumor tissue of ccRCC patients increased significantly compared with those in normal renal samples. There was a significant correlation between the level of inhibin ßE in the tumor tissue and tumor grade. Patients with a lower inhibin ßE expression in the tumor tissue were found to have a longer overall survival and disease-specific survival. CONCLUSIONS: INHBE might be involved in the pathogenesis of ccRCC and function as a tumor promoter.


Subject(s)
Carcinoma, Renal Cell , Inhibin-beta Subunits , Kidney Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Humans , Immunohistochemistry , Inhibin-beta Subunits/genetics , Kidney Neoplasms/genetics , Prognosis , RNA, Messenger/genetics
12.
Cancer Manag Res ; 13: 7607-7621, 2021.
Article in English | MEDLINE | ID: mdl-34675657

ABSTRACT

BACKGROUND: Contradictive results about the direct role of C5a/C5aR1 axis in different cancer cells have been reported. The direct effect of C5a on human renal cell carcinoma (RCC) cells and the underlying mechanism are not clear. The aim of this study is to investigate the role of C5a/C5aR1 axis in RCC cells and its working mechanism. METHODS: RCC cells were infected with lentivirus Lenti-C5a, which was designed to over-express secretory C5a in the cells, or directly treated with recombinant C5a, the influence of these treatments in the cells and the underlying mechanism were explored. RESULTS: Transfection of RCC cells with Lenti-C5a markedly increased the production of C5a and significantly increased the proliferation, migration, and invasion of RCC cells, but direct addition of C5a to the cell culture medium had no such effects though it indeed induced a transient intracellular calcium rise. RCC cells were found to express carboxypeptidase D and M, which reportedly to inactivate C5a. Also, the RCC cells stably transfected with Lenti-C5a produced larger transgrafted tumors in nude mice compared with the non-transfected or control virus transfected cells. In addition, over-expression of C5a significantly increased the expression and phosphorylation of STAT3 as well as the phosphorylated JNK level. Furthermore, the effect of C5a over-expression on RCC cells' proliferation, migration, and invasion could be blocked by Stattic, a STAT3-specific inhibitor. CONCLUSION: Chronic over-activation of C5a/C5aR1 axis could directly increase RCC cells' proliferation, migration, and invasion and thus contribute directly to the progression of the disease. Over-activation of STAT3 pathway is among the underlying mechanism.

13.
Nanoscale Res Lett ; 16(1): 132, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34406517

ABSTRACT

Most Alzheimer's disease drugs do not work efficiently because of the blood-brain barrier. Therefore, we designed a new nanopreparation (PS-DZP-CHP): cholesterol-modified pullulan (CHP) nanoparticle with polysorbate 80(PS) surface coverage, as donepezil (DZP) carrier to realize brain tissue delivery. By size analysis and isothermal titration calorimetry, we chose the optimal dosing ratio of the drug with nanomaterials (1:5) and designed a series of experiments to verify the efficacy of the nanoparticles. The results of in vitro release experiments showed that the nanoparticles can achieve continuous drug release within 72 h. The results of fluorescence observation in mice showed a good brain targeting of PS-DZP-CHP nanoparticles. Furthermore, the nanoparticle can enhance the drug in the brain tissue concentration in mice. DZP-CHP nanoparticles were used to pretreat nerve cells with Aß protein damage. The concentration of lactate dehydrogenase was determined by MTT, rhodamine 123 and AO-EB staining, which proved that DZP-CHP nanoparticles had a protective effect on the neurotoxicity induced by Aß25-35 and were superior to free donepezil. Microthermal perpetual motion meter test showed that PS-DZP-CHP nanoparticles have an affinity with apolipoprotein E, which may be vital for this nanoparticle targeting to brain tissue.

14.
Phys Chem Chem Phys ; 23(30): 16089-16106, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34291779

ABSTRACT

The photostability of DNA plays a key role in the normal function of organisms. A-5FU is a base pair derivative of the A-T dimer where the methyl group is replaced by a F atom. Here, accurate static TDDFT calculations and non-adiabatic dynamic simulations are used to systematically investigate the excited-state decay paths of the A-5FU dimer related to the proton transfer and the out-of-plane twisting deformation motion of A and 5FU in the 1ππ* and 1nπ* states. CC2 is used to check the accuracy of the current TDDFT calculations. Our results show that the deformation of the C[double bond, length as m-dash]C or C[double bond, length as m-dash]N double bond in A and 5FU provides an efficient pathway for the depopulation of the lowest excited states, which can compete with the excited-state proton transfer paths in the dimer. This finding indicates that monomer-like decay paths could be important for the photostability of weakly hydrogen-bonded DNA base pairs and provide a new insight into the excited-state decay paths in base pairs and their analogues.


Subject(s)
DNA/chemistry , Fluorouracil/chemistry , Base Pairing , Density Functional Theory , Dimerization , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Photochemical Processes , Protons , Thermodynamics
15.
Front Oncol ; 11: 686678, 2021.
Article in English | MEDLINE | ID: mdl-34136411

ABSTRACT

KDF1 has been identified as a key regulator of epidermal proliferation and differentiation, but it is unknown whether KDF1 is involved in the pathogenesis of malignancy. No study has reported the expression and function of KDF1 in renal cancer. To explore the pathologic significance of KDF1 in clear cell renal cell carcinoma (ccRCC), the expression level of KDF1 protein in the tumor tissue of ccRCC patients was examined by immunohistochemistry and Western blot while the expression level of KDF1 mRNA was analyzed by using the data from TCGA database. In vitro cell experiments and allogeneic tumor transplantation tests were performed to determine the effects of altered KDF1 expression on the phenotype of ccRCC cells. Both the KDF1 mRNA and protein were found to be decreasingly expressed in the tumor tissue of ccRCC patients when compared with the adjacent non-tumor control tissue. The expression level of KDF1 in the tumor tissue was found to correlate negatively with the tumor grade. Patients with higher KDF1 in the tumor tissue were found to have longer overall survival and disease-specific survival time. KDF1 was shown to be an independent factor influencing the disease-specific survival of the ccRCC patients. Overexpression of KDF1 was found to inhibit the proliferation, migration and invasion of ccRCC cells, which could be reversed by decreasing the expression of KDF1 again. ccRCC cells with KDF1 overexpression were found to produce smaller transgrafted tumors. These results support the idea that KDF1 is involved in ccRCC and may function as a tumor suppressor.

16.
J Cancer ; 12(13): 4075-4085, 2021.
Article in English | MEDLINE | ID: mdl-34093811

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the major cancer-related causes of morbidity and mortality worldwide. Despite the progress in lung cancer treatment, there is still an urgent need to discover novel therapeutic agents for NSCLC. Natural products represent a rich source of bioactive compounds. Through a natural compound library screening assay, we found that a group of anti-insect drugs had significant inhibitory effect on the proliferation of NSCLC cells. Among the anti-insect drugs, two derivatives of artemisinin, i.e., artesunate (ART) and dihydroartemisinin (DHA), a group of well-known anti-malarial drugs, have been shown to possess selective anti-cancer properties. Mechanistically, we found that ART and DHA induced apoptosis of A549 cells as evidenced by decreased protein level of VDAC and increased caspase 3 cleavage. Furthermore, cystine/glutamate transporter (xCT), a core negative regulator of ferroptosis, was downregulated by ART and DHA. The mRNA level of transferrin receptor (TFRC), a positive regulator of ferroptosis, was upregulated by ART and DHA. ART/DHA-induced apoptosis and ferroptosis in NSCLC cells were partly reversed by N-Acetyl-L-cysteine (NAC), a ROS scavenger, and ferrostatin-1, a ferroptosis inhibitor, respectively. These results suggest that artemisinin derivatives have anti-NSCLC activity through induction of ROS-dependent apoptosis/ferroptosis. Our findings provide the experimental basis for the potential application of artemisinin derivatives as a class of novel therapeutic drugs for NSCLC.

17.
BMC Urol ; 21(1): 90, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112125

ABSTRACT

BACKGROUND: Bladder cancer (BC) is the second most frequent malignancy of the urinary system. The aim of this study was to identify key microRNAs (miRNAs) and hub genes associated with BC as well as analyse their targeted relationships. METHODS: According to the microRNA dataset GSE112264 and gene microarray dataset GSE52519, differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using the R limma software package. The FunRich software database was used to predict the miRNA-targeted genes. The overlapping common genes (OCGs) between miRNA-targeted genes and DEGs were screened to construct the PPI network. Then, gene ontology (GO) analysis was performed through the "cluster Profiler" and "org.Hs.eg.db" R packages. The differential expression analysis and hierarchical clustering of these hub genes were analysed through the GEPIA and UCSC Cancer Genomics Browser databases, respectively. KEGG pathway enrichment analyses of hub genes were performed through gene set enrichment analysis (GSEA). RESULTS: A total of 12 DEMs and 10 hub genes were identified. Differential expression analysis of the hub genes using the GEPIA database was consistent with the results for the UCSC Cancer Genomics Browser database. The results indicated that these hub genes were oncogenes, but VCL, TPM2, and TPM1 were tumour suppressor genes. The GSEA also showed that hub genes were most enriched in those pathways that were closely associated with tumour proliferation and apoptosis. CONCLUSIONS: In this study, we built a miRNA-mRNA regulatory targeted network, which explores an understanding of the pathogenesis of cancer development and provides key evidence for novel targeted treatments for BC.


Subject(s)
MicroRNAs/genetics , Urinary Bladder Neoplasms/genetics , Computational Biology , Humans
18.
J Cell Mol Med ; 25(10): 4696-4708, 2021 05.
Article in English | MEDLINE | ID: mdl-33787057

ABSTRACT

Small nucleolar RNA host gene 12 (SNHG12) has been indicated in the tumorigenesis of various human cancers, including clear cell renal cell carcinoma (ccRCC). However, the underlying mechanisms of SNHG12 driving progression of ccRCC remain incompletely understood. In the present study, we discovered that SNHG12 is up-regulated in ccRCC and that overexpression of SNHG12 predicted poor clinical outcome of ccRCC patients. SNHG12 knockdown notably inhibited proliferation and migration of RCC cells. Furthermore, we discovered that miR-30a-3p, a putative ccRCC inhibitor, was competitively sponged by SNHG12. Via the crosstalk network, SNHG12 was capable of up-regulating multiple target genes of miR-30a-3p, namely, RUNX2, WNT2 and IGF-1R, which have been identified to facilitate tumorigenesis of ccRCC. Taken together, our present study suggested a novel ceRNA network, in which SNHG12 could promote the malignancy of ccRCC although competitively binding with miR-30a-3p and consequently release the expression of its downstream cancer-related genes.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , RNA, Long Noncoding/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Epithelial-Mesenchymal Transition , Female , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Middle Aged , Prognosis , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Survival Rate , Tumor Cells, Cultured , Wnt2 Protein/genetics , Wnt2 Protein/metabolism , Xenograft Model Antitumor Assays
19.
Cancer Manag Res ; 12: 11371-11382, 2020.
Article in English | MEDLINE | ID: mdl-33204153

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase 14 (MAPK14) acts as an integration point for multiple biochemical signal pathways. High expressions of MAPK14 have been found in a variety of tumors. Runt­related transcription factor 2 (RUNX2) is related to many tumors, especially in tumor invasion and metastasis. However, the mechanism of these two genes in bladder cancer remains unclear. METHODS: TCGA database and Western blot were used to analyze the mRNA and protein levels of the target gene in bladder cancer tissues and adjacent tissues. The proliferation ability of bladder cancer cells was tested by colony forming and EdU assay. The migration ability of cells was detected by transwell assay. Immunoprecipitation was utilized to detect protein-protein interaction. Cycloheximide chase assay was used to measure the half-life of RUNX2 protein. RESULTS: Phosphorylated mitogen-activated protein kinase 14 (P-MAPK14, Thr180/Tyr182) was highly expressed in bladder cancer tissues and bladder cancer cell lines. Accordingly, P-MAPK14 could be combined with RUNX2 and maintain its protein stability and promote the proliferation and migration of bladder cancer cells. In addition, the functional degradation caused by the downregulation of MAPK14 and P-MAPK14 could be partially compensated by the overexpression of RUNX2. CONCLUSION: These results suggest that P-MAPK14 might play an important role in the development of bladder cancer and in the regulation of RUNX2 protein expression. P-MAPK14 might become a potential target for the treatment of bladder cancer.

20.
Hereditas ; 157(1): 11, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32264962

ABSTRACT

BACKGROUND: Inflammation is one of the factors associated with prostate cancer. The cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in inflammation. Several studies have focused on the association between TNF-α polymorphisms and prostate cancer development. Our meta-analysis aimed to estimate the association between TNF-α rs1800629 (- 308 G/A), rs361525 (- 238 G/A) and rs1799724 polymorphisms and prostate cancer risk. METHODS: Eligible studies were identified from electronic databases (PubMed, Embase, Wanfang and CNKI) using keywords: TNF-α, polymorphism, prostate cancer, until Nov 15, 2019. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to determine the association from a quantitative point-of-view. Publication bias and sensitivity analysis were also applied to evaluate the power of current study. All statistical analyses were done with Stata 11.0 software. RESULTS: Twenty-two different articles were included (22 studies about rs1800629; 8 studies for rs361525 and 5 studies related to rs1799724). Overall, no significant association was found between rs1800629 and rs1799724 polymorphisms and the risk of prostate cancer in the whole (such as: OR = 1.03, 95% CI = 0.92-1.16, P = 0.580 in the allele for rs1800629; OR = 0.95, 95% CI = 0.84-1.07, P = 0.381 in the allele for rs1799724). The rs361525 polymorphism also had no association with prostate cancer in the cases (OR = 0.93, 95% CI = 0.66-1.32, P = 0.684 in the allele) and ethnicity subgroup. The stratified subgroup of genotype method, however, revealed that the rs361525 variant significantly decreased the risk of prostate cancer in the Others (OR = 0.65, 95% CI = 0.47-0.89, P = 0.008, A-allele vs G-allele) and PCR-RFLP (OR = 2.68, 95% CI = 1.00-7.20, P = 0.050, AG vs GG or AA+AG vs GG) methods. CONCLUSIONS: In summary, the findings of the current meta-analysis indicate that the TNF-α rs1800629, rs361525 and rs1799724 polymorphisms are not correlated with prostate cancer development, although there were some pooled positive results. Further well-designed studies are necessary to form more precise conclusions.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL