Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 450
1.
Women Birth ; 37(4): 101618, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703517

BACKGROUND: The group prenatal care model, which caters to women with low medical needs but high support needs, has become a highly prevalent and innovative approach implemented globally. For Centering-Based Group Care (CBGC) to remain effective, women's evaluations of the quality of care and perspectives about the model are crucial. AIM: This study aimed to describe women's appraisal of CBGC quality and explore the experiences of women in the mixed-methods pilot study conducted in Zhejiang, China. METHODS: From August 2021 to December 2022, 20 women provided complete quantitative data using the Quality of Prenatal Care Questionnaire before hospital discharge. Semi-structured interviews were conducted at 6 months postpartum. Qualitative data were analysed using Colaizzi's method. FINDINGS: The mean (standard deviation) total score (of the 5) of the questionnaire was 4.43 (0.1) with a good quality of CBGC. Qualitative research identified five themes: motivations and concerns for participation, the appeal of interactive learning, the development of community ties and social support, healing from psychological trauma with CBGC, and suggestions for CBGC enhancement. DISCUSSION: Women rated CBGC quality as good and benefited significantly from it in the study. As a new alternative option, the women's accounts suggested that CBGC performed excellently in enhancing knowledge, strengthening social bonds, and providing psychological support. CONCLUSION: CBGC quality cannot be determined based on limited the sample size. This pilot study provides evidence regarding the beneficial effects of knowledge, socialization, and psychological healing on CBGC. Further research is suggested to measure CBGC effectiveness and quality.

2.
J Ethnopharmacol ; 332: 118392, 2024 May 25.
Article En | MEDLINE | ID: mdl-38797378

ETHNOPHARMACOLOGICAL RELEVANCE: Da-yuan-yin decoction (DYY) is a classical traditional Chinese medicine prescription for ulcerative colitis (UC). AIM OF STUDY: This study explored the protective effects and mechanisms of DYY on UC. MATERIALS AND METHODS: The mice were fed 2.5% dextran sulfate sodium (DSS) for 7 days to establish UC. On the second day, DYY (0.4 g/kg, 0.8 g/kg, 1.6 g/kg) was orally administered daily for 7 consecutive days. The colon tissues and serum were measured by histopathological examination and biochemical analysis. RESULTS: DYY significantly reduced the disease activity index (DAI) and severity of colon shortening and alleviated pathological changes in the colon tissue. DYY restored the protein expression of intestinal tight junction (TJ) protein (ZO-1, occludin and claudin-3). DYY remarkably decreased the level of lipopolysaccharide (LPS), Lactic acid (LA), circulating free DNA (cfDNA), complement (C3, C3a, C3c, C3aR1, C5a and C5aR1) and regulated the levels of inflammatory cytokines in serum. DYY significantly inhibited the expressions of nuclear factor kappa-B p65 (NF-κB p65) and Toll-like receptor 4 (TLR4), citrullinated histone H3 (CitH3) and myeloperoxidase (MPO), reactive oxygen species (ROS) peptidylarginine deiminase 4 (PAD4) and CD 11b, the mRNA levels of PADI4, MPO and ELANE in colon tissues. CONCLUSIONS: DYY significantly attenuated DSS-induced UC, which was related with regulating the inflammatory response by the inhibition of complement activation, the LPS-TLR4/NF-κB signaling pathway and neutrophil extracellular traps (NETs) formation. DYY is a potential therapeutic agent for UC.

3.
Colloids Surf B Biointerfaces ; 240: 113987, 2024 May 23.
Article En | MEDLINE | ID: mdl-38795586

Residual plasmin activity in whole ultra-instantaneous UHT (UI-UHT) milk causes rapid fat rise during storage, seriously affecting consumers' purchase intentions. In this work, the molecular mechanisms underlying fat destabilization in whole UI-UHT milk by added plasmin were investigated based on the hydrolysis behavior of interfacial proteins. By using SDS-PAGE and peptidomic analysis, we found that the hydrolysis of interfacial proteins by plasmin led to a decrease in the amount and coverage of interfacial proteins and an increase in zeta-potential value, causing the flocculation and coalescence of fat globules. Moreover, the hydrolysis pattern varied in different categories of interfacial proteins by plasmin. In total, 125 peptides in all samples were identified. Plasmin tended to hydrolyze most major milk fat globule membrane (MFGM) proteins into protein fragments (>10 kDa) rather than peptides (<10 kDa). In contrast, peptides derived from caseins were more preferentially identified within a relatively short incubation time. It was the co-hydrolysis of caseins and some major MFGM proteins as anchors that destroyed the stability of MFGM. Furthermore, studies on the effect of trilayer membrane structure remaining at the interface on the hydrolysis rate of major MFGM proteins by plasmin revealed that ADPH and BTN were very sensitive to plasmin action, while PAS 7 was very resistant to plasmin action. Overall, membrane structure reduced the susceptibility of some major MFGM proteins to plasmin and provided protective effects. Therefore, this study provided important insights into the hydrolysis behavior of interfacial proteins in whole UI-UHT milk induced by plasmin.

4.
Talanta ; 276: 126193, 2024 May 11.
Article En | MEDLINE | ID: mdl-38735244

Di(2-ethylhexyl)phthalate (DEHP) is commonly released from plastics in aqueous environment, which can disrupt endocrine system and cause adverse effects on public health. There is a pressing need to highly sensitive detect DEHP. Herein, a near-infrared (NIR) light-driven lab-on-paper cathodic photoelectrochemical aptasensing platform integrated with AgInS2/Cu2O/FeOOH photocathode and "Y"-like ternary conjugated DNA nanostructure-mediated "ON-OFF" catalytic switching of hemin monomer-to-dimer was established for ultrasensitive DEHP detection. Profiting from the collaborative roles of the effective photosensitization of NIR-response AgInS2 and the fast hole extraction of FeOOH, the NIR light-activated AgInS2/Cu2O/FeOOH photocathode generated a markedly enhanced photocathodic signal. The dual hemin-labelled "Y"-like ternary conjugated DNA nanostructures made the hemin monomers separated in space and they maintained highly active to catalyze in situ generation of electron acceptors (O2). The hemin monomers were relocated in close proximity with the help of target-induced allosteric change of DNA nanostructures, which could spontaneously dimerize into catalytically inactive hemin dimers and fail to mediate electron acceptors generation, resulting in a decreased photocathodic signal. Therefore, the ultrasensitive DEHP detection was realized with a linear response range of 1 pM-500 nM and a detection limit of 0.39 pM. This work rendered a promising prototype to construct powerful paper-based photocathodic aptasensing system for sensitive and accurate screening of DEHP in aqueous environment.

5.
J Pharm Biomed Anal ; 243: 116083, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38447348

Daratumumab, a humanized monoclonal antibody utilized in treating immunoglobulin light-chain amyloidosis and relapsed/refractory multiple myeloma, was quantified in rat serum through a simple, economical and effective liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. A surrogate peptide, LLIYDASNR, derived from trypsin hydrolysis, was quantitatively analyzed with LLIYDASN [13C6, 15N4] RAT as an internal standard. This corrected variations from sample pretreatment and mass spectrometry response, involving denaturation and trypsin hydrolysis in a two-step process lasting approximately 1 hour. Methodological validation demonstrated a linear range of 1 µg/mL to 1000 µg/mL in rat serum. Precision, accuracy, matrix effect, sensitivity, stability, selectivity, carryover, and interference met acceptance criteria. The validated LC-MS/MS approach was successfully applied to a pharmacokinetic study of daratumumab in rats at an intravenous dose of 15 mg/kg.


Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Trypsin , Tandem Mass Spectrometry/methods , Antibodies, Monoclonal/chemistry , Immunoglobulin G , Digestion , Reproducibility of Results
6.
J Colloid Interface Sci ; 663: 262-269, 2024 Jun.
Article En | MEDLINE | ID: mdl-38401446

The unprecedented demand for highly selective, real-time monitoring and low-power gas sensors used in food quality control has been driven by the increasing popularity of the Internet of Things (IoT). Herein, the self-standing perylene diimide based covalent organic framework membranes (COFMPDI-THSTZ) were prepared via liquid-liquid interfacial synthesis method. By incorporating the perylene diimide monomer into the COFM through molecular engineering, COFMPDI-THSTZ based sensor demonstrated an outstanding trimethylamine (TMA)-sensing performance at room temperature. Benefited from the TMA-accessible self-standing membrane morphology, π-electron delocalization effect, and extensive surface area with continuous nanochannels, the specific and highly sensitive TMA measurement has been achieved within the range of 0.03-400 ppm, with an exceptional theoretical detection limit as low as 10 ppb. Moreover, the primary internal mechanism of COFMPDI-THSTZ for this efficient TMA detection was investigated through in-situ FT-IR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers on sensing material surface, resulting in alterations in sensor resistance upon exposure to the target gas. For practical usage, COFMPDI-THSTZ based sensor exhibited exceptional real-time in-situ sensing capabilities, further confirmed their potential for application in dynamic prediction evaluation of marine fish products and quality monitoring in IoT.

7.
J Med Chem ; 67(5): 3986-4006, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38387074

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an extracellular enzyme responsible for hydrolyzing cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), the endogenous agonist for the stimulator of interferon genes (STING) pathway. Inhibition of ENPP1 can trigger STING and promote antitumor immunity, offering an attractive therapeutic target for cancer immunotherapy. Despite progress in the discovery of ENPP1 inhibitors, the diversity in chemical structures and the efficacy of the agents are far from desirable, emphasizing the demand for novel inhibitors. Herein, we describe the design, synthesis, and biological evaluation of a series of ENPP1 inhibitors based on the pyrido[2,3-d]pyrimidin-7-one scaffold. Optimization efforts led to compound 31 with significant potency in both ENPP1 inhibition and STING pathway stimulation in vitro. Notably, 31 demonstrated in vivo efficacy in a syngeneic 4T1 mouse triple negative breast cancer model. These findings provide a promising lead compound with a novel scaffold for further drug development in cancer immunotherapy.


Neoplasms , Phosphoric Diester Hydrolases , Mice , Animals , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism
8.
ACS Appl Mater Interfaces ; 16(6): 6825-6836, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38301231

Herein, a flexible near-infrared (NIR) light-actuated photoelectrochemical (PEC) lab-on-paper device was constructed toward miRNA-122 detection, utilizing the combination of DNA-programmed NaYF4/Yb,Tm upconversion nanoparticles (UCNPs) and the Z-scheme AgI/WO3 heterojunction grown in situ on gold nanoparticle-decorated 3D cellulose fibers. The UCNPs were employed as light transducers for converting NIR light into ultraviolet/visible (UV/vis) light to excite the nanojunction. The multiple diffraction of NaYF4/Yb,Tm matched the absorption band of the Z-scheme AgI/WO3 heterojunction, resulting in enhanced PEC photocurrent output. This prepared Z-scheme heterojunction effectively directed charge migration and highly facilitated the electron-hole pair separation. Target miRNA-122 activated the nonenzyme catalytic hairpin assembly signal amplification strategy, generating duplexes which caused the exfoliation of NaYF4/Yb,Tm UCNPs from the biosensor electrode and lowered the photocurrent under 980 nm irradiation. Under optimized circumstances, the proposed NIR-actuated PEC lab-on-paper device presented accurate miRNA-122 detection within a wide linear range of 10 fM-100 nM with a low limit of detection of 2.32 fM, providing a reliable strategy in the exploration of NIR-actuated PEC biosensors for low-cost, high-performance bioassay in clinical applications.


Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Gold , Infrared Rays , DNA , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
9.
Article En | MEDLINE | ID: mdl-38266611

A new liquid chromatography tandem mass spectrometry (LC-MS/MS) method was established to quantify the anti-gastric cancer fully human monoclonal antibody (ramucirumab) in rat and human serum. The surrogate peptide (GPSVLPLAPSSK) for ramucirumab was generated by trypsin hydrolysis and quantified using the isotopically labeled peptide GPSVLPLAPSSK[13C6, 15N2]ST containing two more amino acids at the carboxyl end as an internal standard to correct for variations introduced during the enzymatic hydrolysis process and any mass spectrometry changes. Additionally, the oxidation and deamidation of unstable peptides (VVSVLTVLHQDWLNGK and NSLYLQMNSLR) were detected. The quantitative range of the proposed method was 1-1000 µg/mL, and complete methodological validation was performed. The precision, accuracy, matrix effect, sensitivity, stability, selectivity, carryover, and interference of the measurements met the required standards. The validated LC-MS/MS method was applied to pharmacokinetic studies in rats administered ramucirumab at 15 mg/kg intravenously. Overall, a robust, efficient, and cost-effective LC-MS/MS method was successfully developed for quantifying ramucirumab in rat and human serum.


Ramucirumab , Tandem Mass Spectrometry , Humans , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Peptides/chemistry , Immunoassay , Digestion , Reproducibility of Results
10.
Anal Chim Acta ; 1287: 342135, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38182398

Di(2-ethylhexyl)phthalate (DEHP), as an environmental endocrine disruptor, has adverse effects on eco-environments and health. Thus, it is crucial to highly sensitive on-site detect DEHP. Herein, a double-enzyme active MnO2@BSA mediated dual-modality photoelectrochemical (PEC)/colorimetric aptasensing platform with the cascaded sensitization structures of ZnIn2S4 and TiO2 as signal generators was engineered for rapid and ultrasensitive detection of DEHP using an all-in-one lab-on-paper analytical device. Benefitting from cascaded sensitization effect, the ZnIn2S4/TiO2 photosensitive structures-assembled polypyrrole paper electrode gave an enhanced photocurrent signal. The MnO2@BSA nanoparticles (NPs) with peroxidase-mimic and oxidase-mimic double-enzymatic activity induced multiple signal quenching effects and catalyzed color development. Specifically, the MnO2@BSA NPs acted as peroxidase mimetics to generate catalytic precipitates, which not only obstructed interfacial electron transfer but also served as electron acceptors to accept photogenerated electrons. Besides, the steric hindrance effect from MnO2@BSA NPs-loaded branchy polymeric DNA duplex structures further decreased photocurrent signal. The target recycling reaction caused the detachment of MnO2@BSA NPs to increase PEC signal, realizing the ultrasensitive detection of DEHP with a low detection limit of 27 fM. Ingeniously, the freed MnO2@BSA NPs flowed to colorimetric zone with the aid of fluid channels and acted as oxidase mimetics to induce color intensity enhancement, resulting in the rapid visual detection of DEHP. This work provided a prospective paradigm to develop field-based paper analytical tool for DEHP detection in aqueous environment.


Diethylhexyl Phthalate , Polymers , Manganese Compounds , Prospective Studies , Oxides , Pyrroles , Peroxidase , Peroxidases , Coloring Agents
11.
Anal Chim Acta ; 1287: 342125, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38182395

BACKGROUND: MicroRNA-21 has been determined to be the only microRNA overexpressed in 11 types of solid tumors, making it an excellent candidate as a biomarker for disease diagnosis and therapy. Photoelectrochemical (PEC) biosensors have been widely used for quantification of microRNA-21. However, most PEC biosensing processes still suffer from some problems, such as the difficulty of avoiding the influence of interferents in complex matrices and the false-positive signals. There is a pressing need for establishing a sensitive and stable PEC method to detect microRNA-21. RESULTS: Herein, a nicking endonuclease-mediated rolling circle amplification (RCA)-assisted CRISPR/Cas12a PEC biosensor was fabricated for ultrasensitive detection of microRNA-21. The p-p type heterojunction PbS QDs/Co3O4 polyhedra were prepared as the quencher, thus the initial PEC signal attained the "off" state. Furthermore, the target was specifically identified and amplified by the RCA process. Then, its product single-stranded DNA S1 activated the cis- and trans-cleavage abilities of CRISPR/Cas12a, leading to almost all of the PbS QDs/Co3O4 polyhedra to leave the electrode surface, the p-n semiconductor quenching effect to be disrupted, and the signal achieving the "super-on" state. This pattern of PEC signal changed from "off" to "on" eliminated the interference of false-positive signals. The proposed PEC biosensor presented a satisfactory linear relationship ranging from 1 fM to 10 nM with a detection limit of 0.76 fM (3 Sb/N). SIGNIFICANCE AND NOVELTY: With innovatively synthesized PbS QDs/Co3O4 polyhedra as the effective quencher for PEC signal, the CRISPR/Cas12a dual-cleavage PEC biosensor possessed excellent selectivity, stability and repeatability. Furthermore, the detection of various miRNAs can be realized by changing the relevant base sequences in the constructed PEC biosensor. It also provides a powerful strategy for early clinical diagnosis and biomedical research.


Biosensing Techniques , MicroRNAs , Cobalt , CRISPR-Cas Systems/genetics , MicroRNAs/chemistry , Photochemistry , Biosensing Techniques/methods
12.
Biosens Bioelectron ; 249: 116020, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38219467

The occurrence of Alzheimer's disease (AD) is strongly associated with the progressive aggregation of a 42-amino-acid fragment derived from the amyloid-ß precursor protein (Aß1-42). Therefore, it is crucial to establish a versatile platform that can effectively detect Aß1-42 to aid in the early-stage preclinical diagnosis of AD. Herein, we introduce a specialized split-type analytical platform that enables sensitive and accurate monitoring of Aß1-42 based on a self-corrected photoelectrochemical (PEC) sensing system. To realize this design, gelatinized Ti3C2@Bi2WO6 Schottky heterojunctions were prepared and served as photoelectrodes for tackling the photoinduced charge carriers. Functionalized CaCO3@CuO2 nanocomposites were used as signal converters to detect Aß1-42 and amplify the signal further. Benefiting from the glucose oxidation induced acid microenvironment and H2O2 output, the nanocomposites are able to rapidly decompose, producing Ca2+ and Fenton-like catalyst Cu2+. The Cu2+-driven Fenton-like reaction generated ·OH, which accelerated the 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. Additionally, Ca2+ was cross-linked with alginate inducing gelation on the surface of Ti3C2@Bi2WO6 Schottky heterojunctions, influencing mass transfer and light absorption. Eventually results in the shift of photocurrent, allowing for precise quantification with a detection limit of 0.06 pg mL-1. The combination of colorimetric variation and the photoelectric effect provide a more accurate and reliable result. This research opens up new possibilities for constructing PEC platforms and beyond.


Alzheimer Disease , Biosensing Techniques , Humans , Alzheimer Disease/diagnosis , Hydrogen Peroxide , Biosensing Techniques/methods , Electrochemical Techniques , Oxidation-Reduction , Limit of Detection
13.
Anal Chim Acta ; 1291: 342213, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38280789

BACKGROUND: Escherichia coli can cause gastrointestinal infection, urinary tract infection and other infectious diseases. Accurate detection of Escherichia coli 16S rDNA (Ec-16S rDNA) in clinical practice is of great significance for the identification and treatment of related diseases. At present, there are various types of sensors that can achieve accurate detection of Ec-16S rDNA. Electrochemiluminescence (ECL) has attracted considerable attention from researchers, which causes excellent performance in bioanalysis. Based on the previous research, it is significance to develop a novel, sensitive and efficient ECL biosensor. RESULTS: In this work, an ECL biosensor for the detection of Ec-16S rDNA was constructed by integrating CRISPR/Cas12a technology with the cascade signal amplification strategy consisting of strand displacement amplification (SDA) and dual-particle three-dimensional (3D) DNA rollers. The amplification products of SDA triggered the operation of the DNA rollers, and the products generated by the DNA rollers activated CRISPR/Cas12a to cleave the signal probe, thereby realizing the change of the ECL signal. The cascade amplification strategy realized the exponential amplification of the target signal and greatly improved the sensitivity. Manganese dioxide nanoflowers (MnO2 NFs) as a co-reaction promoter effectively enhanced the ECL intensity of tin disulfide quantum dots (SnS2 QDs). A new ternary ECL system (SnS2 QDs/S2O82-/MnO2 NFs) was prepared, which made the change of ECL intensity of biosensor more significant. The proposed biosensor had a response range of 100 aM-10 nM and a detection limit of 27.29 aM (S/N = 3). SIGNIFICANCE AND NOVELTY: Herein, the cascade signal amplification strategy formed by SDA and dual-particle 3D DNA rollers enabled the ECL biosensor to have high sensitivity and low detection limit. At the same time, the cascade signal amplification strategy was integrated with CRISPR/Cas12a to enable the biosensor to efficiently detect the target. It can provide a new idea for the detection of Ec-16S rDNA in disease diagnosis and clinical analysis.


Biosensing Techniques , Manganese Compounds , DNA, Ribosomal , CRISPR-Cas Systems/genetics , Luminescent Measurements/methods , Electrochemical Techniques/methods , Oxides , Biosensing Techniques/methods , Escherichia coli
14.
Small ; 20(6): e2305900, 2024 Feb.
Article En | MEDLINE | ID: mdl-37786266

Designing photocatalysts with efficient charge transport and abundant active sites for photocatalytic CO2 reduction in pure water is considered a potential approach. Herein, a nickel-phthalocyanine containing Ni-N4 active sites-based conjugated microporous polymer (NiPc-CMP), offering highly dispersed metal active sites, satisfactory CO2 adsorption capability, and excellent light harvesting properties, is engineered as a photocatalyst. By virtue of the covalently bonded bridge, an atomic-scale interface between the NiPc-CMP/Bi2 WO6 Z-scheme heterojunction with strong chemical interactions is obtained. The interface creates directional charge transport highways and retains a high redox potential, thereby enhancing the photoexcited charge carrier separation and photocatalytic efficiency. Consequently, the optimal NiPc-CMP/Bi2 WO6 (NCB-3) achieves efficient photocatalytic CO2 reduction performance in pure water under visible-light irradiation without any sacrificial agent or photosensitizer, affording a CO generation rate of 325.9 µmol g-1 with CO selectivity of 93% in 8 h, outperforming those of Bi2 WO6 and NiPc-CMP, individually. Experimental and theoretical calculations reveal the promotion of interfacial photoinduced electron separation and the role of Ni-N4 active sites in photocatalytic reactions. This study presents a high-performance CMP-based Z-scheme heterojunction with an effective interfacial charge-transfer route and rich metal active sites for photocatalytic CO2 conversion.

15.
Xenobiotica ; 54(1): 1-9, 2024 Jan.
Article En | MEDLINE | ID: mdl-38044881

LN005 is a peptide-drug conjugate (PDC) targeting glucose-regulated protein 78 (GRP78) to treat several types of cancer, such as breast, colon, and prostate cancer.As a new drug modality, understanding its metabolism and elimination pathways will help us to have a whole picture of it. Currently, there are no metabolic studies on LN005; therefore, this study aimed to investigate the metabolism of LN005, clarify its metabolic profile in the liver S9s of different species, and identify the major metabolic pathways and differences between species.The incubation samples were measured by ultra-high performance liquid chromatography combined with orbitrap tandem mass spectrometry (UHPLC-Orbitrap-HRMS).The results showed that LN005 was metabolised by liver S9s, and four metabolites were identified. The main metabolic pathway of LN005 in liver S9s was oxidative deamination to ketone or hydrolysis. Similar metabolic profiles were observed in mouse, rat, dog, monkey, and human liver S9s, indicating no differences between these four animal species and humans.This study provides information for the structural modification and optimisation of LN005 and affords a reference for subsequent animal experiments and human metabolism of other PDCs.


Liver , Microsomes, Liver , Male , Rats , Mice , Humans , Animals , Dogs , Microsomes, Liver/metabolism , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Peptides/metabolism , Haplorhini
16.
ACS Appl Mater Interfaces ; 16(1): 1394-1403, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38157839

The present paper studied the chitosan-doped composite diaphragm by the phase exchange method with the objective of developing a composite diaphragm that complies with the alkaline water electrolysis requirements, as well as tested the electrolytic performance of the diaphragm in alkaline water electrolysis. The structure and morphology are characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The performance of chitosan-doped composite diaphragms was tested; CS3Z12 composite diaphragm with a low area resistance (0.20 Ω cm2), a high bubble point pressure (2.75 bar), and excellent electrochemical performance (current density of 650 mA cm-2 at 1.83 V) shows the best performance. Moreover, the performance of the synthesized composite diaphragm is significantly elevated compared to commercial diaphragms (Zirfon PERL), which is promising for practical application in alkaline electrolytic cells.

17.
Biosensors (Basel) ; 13(11)2023 Nov 13.
Article En | MEDLINE | ID: mdl-37998159

The empty-space-induced depletion region in photoelectrodes severely exacerbates the recombination of electron-hole pairs, thereby reducing the photoelectrochemical (PEC) analytical performance. Herein, the chemical bond that can suppress the potential barrier and overcome the high energy barrier of out-of-plane Ohmic or Schottky contact is introduced into the PEC sensor to eliminate the depletion region and dramatically promote the separation of electron-hole pairs. Specifically, three-dimensional (3D) hierarchically wheatear-like TiO2 (HWT) nanostructures featuring a large surface area to absorb incident light are crafted as the substrate. The facile carbonized strategy is further employed to engineer the Ti-C chemical bond, serving as the touchstone. The average PL lifetime of HWT-C (4.14 ns) is much shorter than that of the 3D HWT (8.57 ns) due to the promoting effect of the chemically bonded structure on carrier separation. Consequently, the 3D HWT-C covalent photoelectrode (600 µA/cm2) exhibits a 3.6-fold increase in photocurrent density compared with the 3D HWT (167 µA/cm2). Ultimately, the model analyte of the tumor marker is detected, and the linear range is 0.02 ng/mL-100 ng/mL with a detection limitation of 0.007 ng/mL. This work provides a basic understanding of chemical bonds in tuning charge separation and insights on strategies for designing high-performance PEC sensors.


Biomarkers, Tumor , Nanostructures , Animals , Electrons
18.
Langmuir ; 39(45): 16048-16059, 2023 11 14.
Article En | MEDLINE | ID: mdl-37918973

Near-infrared (NIR)-responsive bioassays based on upconversion nanoparticle (UCNP) incorporating high-performance semiconductors have been developed by researchers, but most lack satisfactory ultrasensitivity for exceedingly trace amounts of target. Herein, for the first time, the CRISPR/Cas13a system is combined with cascade DNA circuits, fluorescent resonance energy transfer (FRET) effect, and luminescence-confined UCNPs-bonded CuInS2/ZnO p-n heterostructures-functionalized paper-working electrode to construct dual-signal-on paper-supported NIR-irradiated photoelectrochemical (PEC) (NIR-PEC) and upconversion luminescence (UCL) bioassay for high-sensitive quantification of miRNA-106a (miR-106a). By constructing an ideal FAM-labeled aminating molecular beacon (FAM-H2) model, a relatively good FRET ratio between the UCNP and FAM (≈85.3%) can be achieved. In the existence of miR-106a, the hairpin-structure FAM-H2 was unwound, bringing about the distance increase of UCNP and FAM and the restraint of FRET. Accordingly, both the NIR-PEC signal and the UCL intensity gradually recovered distinctly. Unlike conventional single-mode PEC sensors, with NIR excitation, the designed dual-mode sensing system could implement minimized misdiagnose assay and quantitative miR-106a determination with low detection limits, that is, 76.54 and 51.36 aM for NIR-PEC and UCL detection, respectively. This work not only broadens the horizon of application of the CRISPR/Cas13a strategy toward biosensing but also constructs a new structure of the UCNP-semiconductor in the exploration of efficient NIR-responsive tools and inspires the construction of a no-misdiagnosed and novel biosensor for dual-mode liquid biopsy.


Biosensing Techniques , MicroRNAs , Nanoparticles , Fluorescence Resonance Energy Transfer , Luminescence , Clustered Regularly Interspaced Short Palindromic Repeats , Nanoparticles/chemistry , DNA , Biological Assay
19.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37847581

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Coxsackievirus Infections , Humans , Enterovirus A, Human/genetics , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Hand, Foot and Mouth Disease/virology , Immunity, Innate , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Interferon-beta/metabolism
20.
Food Res Int ; 173(Pt 1): 113351, 2023 11.
Article En | MEDLINE | ID: mdl-37803655

Milk fat globule membrane (MFGM) proteins have several biological functions and maintain the fat globule structure. However, the major MFGM protein compositions in simulated human milk emulsions are different from those in human milk due to the composition loss in the isolation process of MFGM materials. To overcome this limitation, we developed a novel strategy, namely, the solution enriched with MFGM was homogenized with cream separated from the milk rich in large-sized fat globules. The results of physicochemical properties and the interfacial protein coverage of the emulsions showed that the emulsions prepared by the new method had a smaller particle size, higher stability, and more interfacial protein coverage when the ratio of fat to protein was 1:3. In addition, proteome differences in interfacial proteins between the new emulsions and simulated infant formula emulsions were investigated, and the results revealed that the interface of the emulsions prepared by the new method contained all major MFGM proteins and unique GO annotations and KEGG pathways. However, only four MFGM proteins (XO, ADPH, PAS 6/7) were quantified at the interface of the emulsions prepared by the common method. Furthermore, the protein number and the total relative abundance of major MFGM proteins were approximately 2-fold and 475-fold higher at the interface of the emulsions prepared by the new method compared to the common method. Overall, the study modulated the interfacial protein composition of fat globules by screening the sources of lipid and homogenization methods and revealed its potential effect on processing stability and biological properties.


Membrane Proteins , Milk, Human , Female , Infant , Humans , Emulsions , Glycolipids/chemistry
...