Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
PLoS Negl Trop Dis ; 17(11): e0011727, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37948465

ABSTRACT

BACKGROUND: Clonorchiasis, caused by the infection of Clonorchis sinensis (C. sinensis), is a kind of neglected tropical disease, but it is highly related to cholangiocarcinoma. It has been well known that NO from chronic inflammation responses are thought to be a major component of the damage and ultimate carcinogenesis ESPs such as nitric oxide synthase interacting protein (NOSIP) are thought to enhance the damage. The objective of this study was to identify the protein candidates interact with recombinant CsNOSIP (rCsNOSIP) and explore their role involved in CCA development or progression. METHODS: We applied HuProt microarray containing 21,000 probe sets for a systematic identification of rCsNOSIP-binding proteins and grouped binding hits by gene function. Pull-down assays were used to confirm the interaction of rCsNOSIP with alveolar soft part sarcoma (ASPSCR-1) and sirtuins 5 (Sirt-5). ASPSCR-1/Sirt-5 over-expression and siRNA knockdown experiments were employed for obtain of ASPSCR-1/Sirt-5 high or low expression (ASP-oe/Sirt5-oe or ASP-si/Sirt5-si) cholangiocarcinoma cell line (CCLP-1) cells. Nitric oxide (NO) and reactive oxygen species assay (ROS) as well as cell proliferation and wound-healing assays were performed to observe the effect of rCsNOSIP on ASP-oe/Sirt5-oe or ASP-si/Sirt5-si CCLP-1 cells. RESULTS: Seventy candidate proteins protein "hits" were detected as rCsNOSIP-binding proteins by HuProt microarray and bioinformatics analysis. Pull down assay showed that ASPSCR-1 and Sirt-5 could interact with rCsNOSIP. In addition, endotoxin-free-rCsNOSIP could increase the production of NO and ROS and promote the migration of CCLP-1 cells, while its effect on enhancing cell proliferation was not significant. Furthermore, ROS/NO production, proliferation, or migration were increased in ASP-si or Sirt5-si CCLP-1 cells but decreased in Asp-oe or Sirt5-oe CCLP-1 cells when stimulated with rCsNOSIP. CONCLUSIONS: Our findings suggest that CsNOSIP as a component of CsESPs might promote the development and invasion of CCA and Sirt5/ ASPSCR1 as host molecules might play a novel protective role against adverse stimulus during C. sinensis infection. This work supports the idea that CsESPs induce the occurrence and progression of CCA through ROS/RNS-induced oxidative and nitrative DNA damage.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Clonorchiasis , Clonorchis sinensis , Fasciola hepatica , Sarcoma, Alveolar Soft Part , Animals , Humans , Fasciola hepatica/metabolism , Reactive Oxygen Species/metabolism , Sarcoma, Alveolar Soft Part/metabolism , Clonorchis sinensis/genetics , Oxidative Stress , Carrier Proteins/metabolism , Cell Proliferation , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology
2.
Mol Biochem Parasitol ; 255: 111573, 2023 09.
Article in English | MEDLINE | ID: mdl-37127222

ABSTRACT

Clonorchis sinensis (C. sinensis) is a fish-borne trematode that inhabits the bile duct of mammals including humans, cats, dogs, rats, and so on. In the complex life cycle of C. sinensis, the worm develops successively in two intermediate hosts in fresh water and one definitive host. What's more, it undergoes eight developmental stages with a distinct morphology. Clonorchiasis, caused by C. sinensis infection, is an important food-borne parasitic disease and one of the most common zoonoses. C. sinensis infection could result in hyperplasia of the bile duct epithelium, obstructive jaundice, gall-stones, cholecystitis and cholangitis, even liver cirrhosis and cholangiocarcinoma. Thus, clonorchiasis is a serious public health problem in endemic areas. Integrated strategies should be adopted in the prevention and control of clonorchiasis due to the epidemiological characteristics. The recent advances in high-throughput technologies have made available the profiling of multiple layers of a biological system, genomics, transcriptomics, proteomics, and metabolomics. These data can help us to get more information about the development, physiology, metabolism, and reproduction of the parasite as well as pathogenesis and parasite-host interactions in clonorchiasis. In the present study, we summarized recent progresses in omics studies on C. sinensis providing insights into the studies and future directions on treating and preventing C. sinensis associated diseases.


Subject(s)
Clonorchiasis , Clonorchis sinensis , Humans , Animals , Rats , Dogs , Clonorchis sinensis/genetics , Clonorchis sinensis/metabolism , Clonorchiasis/epidemiology , Clonorchiasis/complications , Clonorchiasis/parasitology , Zoonoses , Gene Expression Profiling , Host-Parasite Interactions , Mammals
3.
Parasit Vectors ; 15(1): 460, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510325

ABSTRACT

BACKGROUND: In China, people infected with hepatitis B virus (HBV) are commonly found in areas with a high prevalence of Clonorchis sinensis, a trematode worm. Published studies have reported that the progression of hepatitis B is affected by coinfection C. sinensis. METHODS: Clinical data from a total of 72 patients with C. sinensis and HBV (as sole infection or with coinfections) and 29 healthy individuals were analysed. We also incubated the hepatic stellate cell line LX-2 with total proteins from C. sinensis adult worms (CsTPs) and HBV-positive sera. In addition, the human hepatoblastoma cell line HepG2.2.15 was treated with the antiviral drug entecavir (ETV), CsTPs and the anti-C. sinensis drug praziquantel (PZQ). RESULTS: Our clinical data indicated that the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB) and hyaluronic acid (HA) were significantly higher in patients with coinfection than in those infected with HBV only. In cell models, compared with the model in which LX-2 cells were incubated with HBV-positive sera (HBV group), transcripts of alpha-smooth muscle actin and types I and III collagen were significantly elevated in the models of LX-2 cells treated with CsTPs and HBV-positive sera (CsTP+HBV group), while the messenger RNA levels of tumour necrosis factor-α, interleukin (IL)-1ß and IL-6 in the CsTP+HBV group were clearly lower. The HBV surface antigen and hepatitis B e-antigen levels were higher in the HepG2.2.15 cells treated with ETV and CsTPs than in those in the ETV group and in the cells administered a mixture of ETV, CsTPs and PZQ. CONCLUSIONS: These results confirmed that C. sinensis and HBV coinfection could aggravate the progression of liver fibrosis. CsTPs might promote chronic inflammation of the liver in individuals with HBV infection, resulting in the development of hepatic fibrosis.


Subject(s)
Clonorchis sinensis , Coinfection , Hepatitis B , Adult , Animals , Humans , Hepatitis B virus/genetics , Clonorchis sinensis/genetics , Hepatitis B/complications , Hepatitis B/drug therapy , Coinfection/pathology , Liver Cirrhosis/pathology , Praziquantel/therapeutic use , Hepatocytes
4.
An Acad Bras Cienc ; 93(suppl 3): e20191024, 2021.
Article in English | MEDLINE | ID: mdl-34787166

ABSTRACT

Until now, custom-made or commercial polyclonal antibody against only one kind of fish IgM limited application of the antibody. During our research on development of vaccine against infection of Clonorchis sinensis (C. sinensis) in several kinds of fish, we were conscious of the urgency of secondary antibody to evaluate immune effect and screen C. sinensis infection with immunological technology instead of labor-intensive and time-consuming squash or artificial digestion of fish flesh. So that, we purified IgM of grass carp, bighead carp, crucian carp, common carp and tilapia which were widely cultured freshwater fishes in most areas of China. On this basis, we generated HRP-conjunct rabbit IgG anti-fish IgMs with high titers. IgM of other freshwater fishes including oshima, yellow catfish, bream, silver carp and so on could be recognized by the IgG sensitively. Additionally, The ELISA detection displayed that the IgG could be more specific and sensitive than custom-made rabbit IgG anti-grass carp IgM. The acquirement of HRP-conjunct rabbit IgG anti-fish IgMs was the cornerstone for studying the immune system of teleost fish, developing immunoassay methods and evaluation of fish vaccine with more convenience.


Subject(s)
Carps , Fresh Water , Animals , Antibodies, Anti-Idiotypic , China , Fishes , Immunoglobulin G , Rabbits
5.
Front Med (Lausanne) ; 8: 617195, 2021.
Article in English | MEDLINE | ID: mdl-34322498

ABSTRACT

Background: Mass drug administration with artemisinin-piperaquine (AP-MDA) is being considered for elimination of residual foci of malaria in Democratic Republic of São Tomé and Principe. Methods: Three monthly rounds of AP-MDA were implemented from July to October 2019. Four zones were selected. A and B were selected as a study site and a control site, respectively. C and D were located within 1.5 and 1.5 km away from the study site, respectively. Parasite prevalence, malaria incidence, and the proportion of the Plasmodium falciparum malaria cases were evaluated. Results: After 3 monthly rounds of AP-MDA, the parasite prevalence and the gametocyte carriage rate of P. falciparum in zone A decreased from 28.29(‰) to 0 and 4.99(‰) to 0, respectively. Compared to zone B, the relative risk for the population with Plasmodium falciparum malaria in zone A was lower (RR = 0.458, 95% CI: 0.146-1.437). Malaria incidence fell from 290.49(‰) (the same period of the previous year) to 15.27(‰) (from the 29th week in 2019 to the 14th week in 2020), a decrease of 94.74% in zone A, and from 31.74 to 5.46(‰), a decline of 82.80% in zone B. Compared to the data of the same period the previous year, the cumulative number of P. falciparum malaria cases were lower, decreasing from 165 to 10 in zone A and from 17 to 4 in zone B. The proportion of the P. falciparum malaria cases on the total malaria cases of the country decreased of 90.16% in zone A and 71.34% in zone C. Conclusion: AP-MDA greatly curbed malaria transmission by reducing malaria incidence in the study site and simultaneously creating a knock-on effect of malaria control within 1.5 km of the study site and within the limited time interval of 38 weeks.

6.
Appl Microbiol Biotechnol ; 105(6): 2513-2526, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33606075

ABSTRACT

Bacillus subtilis (B. subtilis) spore can serve as an ideal vehicle for expressing heterologous antigens, and elicit specific immune responses by oral administration. In previous studies, we successfully constructed the recombinant B. subtilis spores expressing cysteine protease of Clonorchis sinensis (C. sinensis, B.s-CsCP), and confirmed that oral administration of B.s-CsCP could elicit good protective immune responses in mice. In this study, Gram staining was used to observe the morphology of B.s-CsCP in different form, and the storage of liquid spores and lyophilized spores at different temperatures was compared. The mice were orally immunized with three different doses of spores (2×108, 1×109, and 5×109 CFU/day) for three times in total at biweekly interval. Then, antibody levels of mice were measured, the safety of spores was evaluated, and the changes of gut microbiota after oral gavage of spores (1×109 dose) were investigated. Results showed that B. subtilis was a typical Gram-positive bacterium, and its spore had good resistance to chemical dye. Liquid B. subtilis spores resuspended in sterile water could be stored for a long time at 4 °C or below, while lyophilized spores could be well stored even at RT and better at lower temperatures. Oral administration of B. subtilis spores to mice could stimulate both local mucosal and systemic immune responses in a dose-dependent manner without toxic side effects. Besides, beneficial bacteria producing butyrate such as Odoribacter were increased, while potential pathogens such as Escherichia-Shigella were decreased in mice intestine. Therefore, our work further confirmed that B. subtilis spores expressing CsCP could be a promising oral vaccine against C. sinensis with the advantages of stability, safety, easy storage, and promotion of intestinal health.Key Points• Recombinant CsCP B. subtilis spores could be easily preserved in either liquid or freeze-dried state.• Oral immunization of recombinant spores in mice could increase both local and system immune levels in a dose-dependent manner.• Oral administration of recombinant spores increased the number of beneficial bacteria and reduced the number of harmful bacteria in the intestinal tract of mice.


Subject(s)
Clonorchiasis , Clonorchis sinensis , Cysteine Proteases , Gastrointestinal Microbiome , Animals , Antibodies, Helminth , Bacillus subtilis/genetics , Clonorchiasis/prevention & control , Clonorchis sinensis/genetics , Mice , Spores, Bacterial
7.
PLoS Negl Trop Dis ; 14(4): e0008287, 2020 04.
Article in English | MEDLINE | ID: mdl-32352979

ABSTRACT

Clonorchiasis, caused by chronic infection with Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease that seriously afflicts more than 35 million people globally, resulting in a socioeconomic burden in endemic regions. C. sinensis adults long-term inhabit the microaerobic and limited-glucose environment of the bile ducts. Energy metabolism plays a key role in facilitating the adaptation of adult flukes to crowded habitat and hostile environment. To understand energy source for adult flukes, we compared the component and content of free amino acids between C. sinensis-infected and uninfected bile. The results showed that the concentrations of free amino acids, including aspartic acid, serine, glycine, alanine, histidine, asparagine, threonine, lysine, hydroxylysine, and urea, were significantly higher in C. sinensis-infected bile than those in uninfected bile. Furthermore, exogenous amino acids could be utilized by adult flukes via the gluconeogenesis pathway regardless of the absence or presence of exogenous glucose, and the rate-limiting enzymes, such as C. sinensis glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and pyruvate carboxylase, exhibited high expression levels by quantitative real-time PCR analysis. Interestingly, no matter whether exogenous glucose was present, inhibition of gluconeogenesis reduced the glucose and glycogen levels as well as the viability and survival time of adult flukes. These results suggest that gluconeogenesis might play a vital role in energy metabolism of C. sinensis and exogenous amino acids probably serve as an important energy source that benefits the continued survival of adult flukes in the host. Our study will be a cornerstone for illuminating the biological characteristics of C. sinensis and the host-parasite interactions.


Subject(s)
Amino Acids/metabolism , Bile/parasitology , Clonorchis sinensis/growth & development , Clonorchis sinensis/metabolism , Animals , Bile/chemistry , Cats , Clonorchiasis/parasitology , Clonorchis sinensis/enzymology , Clonorchis sinensis/genetics , Disease Models, Animal , Energy Metabolism , Gene Expression Profiling , Gluconeogenesis , Metabolic Networks and Pathways/genetics , Rats
8.
Parasitology ; 147(10): 1080-1087, 2020 09.
Article in English | MEDLINE | ID: mdl-32404215

ABSTRACT

Clonorchis sinensis (C. sinensis) is one of the most serious food-borne parasites, which can lead to liver fibrosis or cholangiocarcinoma. Effective measures for clonorchiasis prevention are still urgently needed. Bacillus subtilis (B. subtilis) is an effective antigen delivery platform for oral vaccines. Chonorchis sinensis serpin (CsSerpin) was proved to be potential vaccine candidates. In this study, CsSerpin3 was displayed on the surface of B. subtilis spore and recombinant spores were orally administrated to BALB/C mice. CsSerpin3-specific IgA levels in faecal, bile and intestinal mucous increased at 4-8 weeks after the first administration compared with those in control groups. The mucus production and the number of goblet cells in intestinal mucosa elevated in B.s-CotC-CsSerpin3 (CotC, coat protein of B. subtilis spore) spores treated group compared to those in blank control. No significant difference in the activities of glutamic-pyruvic transaminase/ alanine aminotransferase and glutamic oxalacetic transaminase/aspartate aminotransferase were observed between groups. There was no side effect inflammation and observable pathological damage in the liver tissue of mice after administration. Moreover, collagen deposition and Ishak score were statistically reduced in B.s-CotC-CsSerpin3 spores treated mice. In conclusion, B. subtilis spores displaying CsSerpin3 could be investigated further as an oral vaccine against clonorchiasis.


Subject(s)
Bacillus subtilis/immunology , Clonorchiasis/prevention & control , Clonorchis sinensis/immunology , Foodborne Diseases/prevention & control , Helminth Proteins/immunology , Serpins/immunology , Vaccines/pharmacology , Animals , Humans , Mice , Mice, Inbred BALB C , Microorganisms, Genetically-Modified , Spores, Bacterial/immunology
9.
Parasitol Res ; 119(5): 1641-1652, 2020 May.
Article in English | MEDLINE | ID: mdl-32285266

ABSTRACT

Clonorchis sinensis (C. sinensis) can induce a food-borne parasitic disease (clonorchiasis). Numerous studies have analyzed functional proteins, immunologic factors, pro-inflammatory cytokines, and cell signaling transduction that promote the development of clonorchiasis. In a previous study, it was shown that C. sinensis adult-derived total protein (CsTP) might be involved in the pathogenesis and development of liver fibrosis via bringing about Th2 immune response. In the present study, further investigation of CsTP on cellular function and inflammatory effect in vitro and in vivo has been elicited. CsTP induced inflammation and autophagy as evidenced by upregulation of TNF-α, IFN-γ, and autophagic markers LC3B and P62. Exposed to CsTP upregulated the antiapoptotic gene Bcl-2 expression, diminished the apoptosis induced by H2O2, but promoted the proliferation and migration of LX-2 cells in proper concentration range. Additionally, the protein levels of p-AKT and p-mTOR were repressed in response to CsTP, suggesting a correlation of blocking the activation of mTOR/AKT signaling pathway. These results revealed that CsTP might exacerbate hepatic pathological changes by regulating cell proliferation, apoptosis, autophagy, and inflammation in the liver and LX-2 cells. Some effects might be partially involved in the mTOR and AKT pathways.


Subject(s)
Apoptosis/physiology , Clonorchiasis/pathology , Clonorchis sinensis/pathogenicity , Liver Cirrhosis/pathology , Protozoan Proteins/metabolism , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Clonorchiasis/parasitology , Clonorchis sinensis/genetics , Cytokines/metabolism , Foodborne Diseases/parasitology , Humans , Hydrogen Peroxide/metabolism , Inflammation/pathology , Interferon-alpha/metabolism , Liver Cirrhosis/parasitology , Mice , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , RNA-Binding Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
10.
Appl Microbiol Biotechnol ; 104(4): 1633-1646, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31912200

ABSTRACT

Clonorchis sinensis (C. sinensis), an important fishborne zoonotic parasite threatening public health, is of major socioeconomic importance in epidemic areas. Effective strategies are still urgently expected to prevent against C. sinensis infection. In the present study, paramyosin of C. sinensis (CsPmy) was stably and abundantly expressed on the surface of Bacillus subtilis spores. The recombinant spores (B.s-CotC-CsPmy) were incorporated in the basal pellets diet in three different dosages (1 × 105, 1 × 108, 1 × 1011 CFU/g pellets) and orally administrated to grass carp (Ctenopharyngodon idella). The immune responses and intestinal microbiota in the treated grass carp were investigated. Results showed that specific anti-CsPmy IgM levels in sera, skin mucus, bile, and intestinal mucus, as well as mRNA levels of IgM and IgZ in the spleen and head kidney, were significantly increased in B.s-CotC-CsPmy-1011 group. Besides, transcripts levels of IL-8 and TNF-αin the spleen and head kidney were also significantly elevated than the control groups. Moreover, mRNA levels of tight junction proteins in the intestines of B.s-CotC-CsPmy-1011 group increased. Potential pathogenetic bacteria with lower abundance and higher abundances of candidate probiotics and bacteria associated with digestion in 1 × 1011 CFU/g B.s-CotC-CsPmy spores administrated fishes could be detected compared with control group. The amount of metacercaria in per gram fish flesh was statistically decreased in 1 × 1011 CFU/g B.s-CotC-CsPmy spores orally immunized group. Our work demonstrated that B. subtilis spores presenting CsPmy on the surface could be a promising effective, safe, and needle-free candidate vaccine against C. sinensis infection for grass carp.


Subject(s)
Bacillus subtilis , Carps/parasitology , Clonorchiasis/veterinary , Spores, Bacterial , Tropomyosin/immunology , Vaccines/administration & dosage , Administration, Oral , Animal Feed/microbiology , Animals , Antibodies, Helminth/blood , Carps/immunology , Cercaria/immunology , Clonorchiasis/immunology , Clonorchiasis/prevention & control , Clonorchis sinensis , Fish Diseases/parasitology , Fish Diseases/prevention & control , Immunoglobulin M/immunology , Intestines/immunology , Tropomyosin/genetics , Vaccines/immunology
11.
Fish Shellfish Immunol ; 84: 768-780, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30300738

ABSTRACT

Grass carp (Ctenopharyngodon idellus) hemorrhagic disease (GCHD), caused by grass carp reovirus (GCRV), has given rise to an enormous loss in grass carp industry during the past years. Up to date, vaccination remained to be the most effective way to protect grass carp from GCHD. Oral vaccination is of major interest due to its advantages of noninvasive, time-saving, and easily-operated. The introduction of oral vaccination has profound impact on aquaculture industry because of its feasibility of extensive application for fish in various size and age. However, the main challenge in developing oral vaccine is that antigens are easily degraded and are easy to induce tolerance. Bacillus subtilis (B. subtilis) spores would be an ideal oral vaccine delivery system for their robust specialty, gene operability, safety and adjuvant property. VP4 protein is the major outer capsid protein encoded by GCRV segment 6 (S6), which plays an important role in viral invasion and replication. In this study, we used B. subtilis spores as the oral delivery system and successfully constructed the B. subtilis CotC-VP4 recombinant spores (CotC-VP4 spores) to evaluate its protective efficacy in grass carp. Grass carp orally immunized with CotC-VP4 spores showed a survival rate of 57% and the relative percent survival (RPS) of 47% after the viral challenge. Further, the specific IgM levels in serum and the specific IgZ levels in intestinal mucus were significantly higher in the CotC-VP4 group than those in the Naive group. The immune-related genes including three innate immune-related genes (IL-4/13A, IL-4/13B, CSF1R), four adaptive immune-related genes (BAFF, CD4L, MHC-II, CD8), three inflammation-related genes (IL-1ß, TNF-α, TGF-ß) and interferon type I (IFN-I) related signaling pathway genes were significantly up-regulated in the CotC-VP4 group. The study demonstrated that the CotC-VP4 spores produced protection in grass carp against GCRV infection, and triggered both innate and adaptive immunity post oral immunization. This work highlighted that Bacillus subtilis spores were powerful platforms for oral vaccine delivery, and the combination of Bacillus subtilis spores with GCRV VP4 protein was a promising oral vaccine.


Subject(s)
Bacillus subtilis/chemistry , Carps/immunology , Fish Diseases/prevention & control , Reoviridae Infections/veterinary , Reoviridae/immunology , Vaccination/veterinary , Viral Vaccines/pharmacology , Adaptive Immunity , Administration, Oral , Animals , Antiviral Agents , Bacillus subtilis/genetics , Fish Diseases/immunology , Fish Diseases/parasitology , Immunity, Innate , Microorganisms, Genetically-Modified/chemistry , Microorganisms, Genetically-Modified/genetics , Random Allocation , Reoviridae/chemistry , Reoviridae Infections/immunology , Reoviridae Infections/parasitology , Reoviridae Infections/prevention & control , Spores, Bacterial/chemistry , Spores, Bacterial/genetics , Viral Proteins/metabolism
12.
Parasit Vectors ; 11(1): 156, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29514667

ABSTRACT

BACKGROUND: Clonorchiasis caused by Clonorchis sinensis has become increasingly prevalent in recent years. Effective prevention strategies are urgently needed to control this food-borne infectious disease. Previous studies indicated that paramyosin of C. sinensis (CsPmy) is a potential vaccine candidate. METHODS: We constructed a recombinant plasmid of PEB03-CotC-CsPmy, transformed it into Bacillus subtilis WB600 strain (B.s-CotC-CsPmy), and confirmed CsPmy expression on the spore surface by SDS-PAGE, Western blotting and immunofluorescence assay. The immune response and protective efficacy of the recombinant spore were investigated in BALB/c mice after intragastrical or intraperitoneal immunization. Additionally, biochemical enzyme activities in sera, the intestinal histopathology and gut microflora of spore-treated mice were investigated. RESULTS: CsPmy was successfully expressed on the spore surface and the fusion protein on the spore surface with thermostability. Specific IgG in sera and intestinal mucus were increased after intraperitoneal and intragastrical immunization. The sIgA level in intestinal mucus, feces and bile of B.s-CotC-CsPmy orally treated mice were also significantly raised. Furthermore, numerous IgA-secreting cells were detected in intestinal mucosa of intragastrically immunized mice. No inflammatory injury was observed in the intestinal tissues and there was no significant difference in levels of enzyme-indicated liver function among the groups. Additionally, the diversity and abundance of gut microbiota were not changed after oral immunization. Intragastric and intraperitoneal immunization of B.s-CotC-CsPmy spores in mice resulted in egg reduction rates of 48.3 and 51.2% after challenge infection, respectively. Liver fibrosis degree in B.s-CotC-CsPmy spores treated groups was also significantly reduced. CONCLUSIONS: CsPmy expressed on the spore surface maintained its immunogenicity. Both intragastrical and intraperitoneal immunization with B.s-CotC-CsPmy spores induced systemic and local mucosal immune response in mice. Although both intragastric and intraperitoneal immunization elicited a similar protective effect, intragastric immunization induced stronger mucosal immune response without side effects to the liver, intestine and gut microbiota, compared with intraperitoneal immunization. Oral immunization with B. subtilis spore expressing CsPmy on the surface was a promising, safe and needle-free vaccination strategy against clonorchiasis.


Subject(s)
Bacillus subtilis/genetics , Clonorchiasis/prevention & control , Clonorchis sinensis/immunology , Drug Carriers , Spores, Bacterial/genetics , Tropomyosin/immunology , Vaccines, Synthetic/immunology , Administration, Oral , Animals , Antibodies, Helminth/analysis , Bile/chemistry , Blood Chemical Analysis , Cell Surface Display Techniques , Clonorchis sinensis/genetics , Disease Models, Animal , Feces/chemistry , Histocytochemistry , Immunoglobulin A, Secretory/analysis , Injections, Intraperitoneal , Intestinal Mucosa/immunology , Intestines/immunology , Intestines/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Mice, Inbred BALB C , Mucus/chemistry , Parasite Egg Count , Treatment Outcome , Tropomyosin/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
13.
PLoS Negl Trop Dis ; 12(3): e0006251, 2018 03.
Article in English | MEDLINE | ID: mdl-29505573

ABSTRACT

BACKGROUND: Clonorchis sinensis (C. sinensis) is the most widespread human liver fluke in East Asia including China and Korea. Clonorchiasis as a neglected tropical zoonosis, leads to serious economic and public health burden in China. There are considerable evidences for an etiological relation between chronic clonorchiasis and liver fibrosis in human beings. Liver fibrosis is a highly conserved and over-protected response to hepatic tissue injury. Immune cells including CD4+ T cell as well as dendritic cell (DC), and pro-fibrogenic cytokines like interleukin 4 (IL-4), IL-13 have been identified as vital manipulators in liver fibrogenesis. Our previous studies had a mere glimpse of T helper type 2 (Th2) dominant immune responses as key players in liver fibrosis induced by C. sinensis infection, but little is known about the involved mechanisms in this pathological process. METHODOLOGY/PRINCIPAL FINDINGS: By flow cytometry (FACS), adult-derived total proteins of C. sinensis (CsTPs) down-regulated the expression of surface markers CD80, CD86 and major histocompatibility complex class II (MHC-II) on lipopolysaccharide (LPS) induced DC. ELISA results demonstrated that CsTPs inhibited IL-12p70 release from LPS-treated bone marrow-derived dendritic cells (BMDC). IL-10 level increased in a time-dependent manner in LPS-treated BMDCs after incubation with CsTPs. CD4+ T cells incubated with LPS-treated BMDCs plus CsTPs could significantly elevate IL-4 level by ELISA. Meanwhile, elevated expression of pro-fibrogenic mediators including IL-13 and IL-4 were detected in a co-culture system of LPS-activated BMDCs and naive T cells containing CsTPs. In vivo, CsTPs-immunized mice enhanced expression of type 2 cytokines IL-13, IL-10 and IL-4 in both splenocytes and hepatic tissue. Exposure of BMDCs to CsTPs activated expression of mannose receptor (MR) but not toll like receptor 2 (TLR2), TLR4, C-type lectin receptor DC-SIGN and Dectin-2 on the cell surface by RT-PCR and FACS. Blockade of MR almost completely reversed the capacity of CsTPs to suppress LPS-induced BMDCs surface markers CD80, CD86 and MHC-II expression, and further made these BMDCs fail to induce a Th2-skewed response as well as Th2 cell-associated cytokines IL-13 and IL-4 release in vitro. CONCLUSIONS/SIGNIFICANCE: Collectively, we validated that CsTPs could suppress the maturation of BMDCs in the presence of LPS via binding MR, and showed that the CsTPs-pulsed BMDCs actively polarized naive T helper cells to Th2 cells though the production of IL-10 instead of IL-12. CsTPs endowed host with the capacity to facilitate Th2 cytokines production including IL-13 and IL-4 in vitro and vivo. The study might provide useful information for developing potential therapeutic targets against the disease.


Subject(s)
Clonorchiasis/immunology , Clonorchis sinensis/immunology , Cytokines/immunology , Dendritic Cells/immunology , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/metabolism , Th2 Cells/immunology , Animals , Female , Histocompatibility Antigens Class II/metabolism , Lipopolysaccharides/pharmacology , Mannose Receptor , Mice , Mice, Inbred BALB C
14.
Parasit Vectors ; 10(1): 557, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29121987

ABSTRACT

BACKGROUND: Clonorchis sinensis, the causative agent of clonorchiasis, is classified as one of the most neglected tropical diseases and affects more than 15 million people globally. This hepatobiliary disease is highly associated with cholangiocarcinoma. As key molecules in the infectivity and subsistence of trematodes, glycolytic enzymes have been targets for drug and vaccine development. Clonorchis sinensis pyruvate kinase (CsPK), a crucial glycolytic enzyme, was characterized in this research. RESULTS: Differences were observed in the sequences and spatial structures of CsPK and PKs from humans, rats, mice and rabbits. CsPK possessed a characteristic active site signature (IKLIAKIENHEGV) and some unique sites but lacked the N-terminal domain. The predicted subunit molecular mass (Mr) of CsPK was 53.1 kDa. Recombinant CsPK (rCsPK) was a homopentamer with a Mr. of approximately 290 kDa by both native PAGE and gel filtration chromatography. Significant differences in the protein and mRNA levels of CsPK were observed among four life stages of C. sinensis (egg, adult worm, excysted metacercaria and metacercaria), suggesting that these developmental stages may be associated with diverse energy demands. CsPK was widely distributed in adult worms. Moreover, an intense Th1-biased immune response was persistently elicited in rats immunized with rCsPK. Also, rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. CONCLUSIONS: The sequences and spatial structures, molecular mass, and expression profile of CsPK have been characterized. rCsPK was indicated to be a homopentamer. Rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. CsPK is worthy of further study as a promising target for drug and vaccine development.


Subject(s)
Clonorchiasis/immunology , Clonorchis sinensis/enzymology , Pyruvate Kinase/genetics , Pyruvate Kinase/immunology , Animals , Antibodies, Helminth/blood , Blotting, Western , Clonorchiasis/prevention & control , Clonorchis sinensis/genetics , Clonorchis sinensis/immunology , Humans , Immunization , Life Cycle Stages/genetics , Mice , Pyruvate Kinase/chemistry , Pyruvate Kinase/isolation & purification , Rabbits , Rats , Recombinant Proteins/immunology , Sequence Analysis, DNA , Th1 Cells/immunology
15.
PLoS Negl Trop Dis ; 11(11): e0006074, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29125839

ABSTRACT

BACKGROUND: Numerous experimental and epidemiological studies have demonstrated a link between Clonorchis sinensis (C. sinensis) infestation and cholangiocarcinoma (CCA) as well as hepatocellular carcinoma (HCC). The underlying molecular mechanism involved in the malignancy of CCA and HCC has not yet been addressed. Csseverin, a component of the excretory/secretory products of C. sinensis (CsESPs), was confirmed to cause obvious apoptotic inhibition in the human HCC cell line PLC. However, the antiapoptotic mechanism is unclear. In the present study, we investigated the cellular features of the antiapoptotic mechanism upon transfection of the Csseverin gene. METHODS: In the present study, we evaluated the effects of Csseverin gene overexpression on the apoptosis of PLC cells using an Annexin PE/7-AAD assay. Western blotting was applied to quantify the activation of caspase-3 and caspase-9, the mitochondrial translocation of Bax and the release of Cyt c upon Csseverin overexpression in PLC cells. Laser scanning confocal microscopy was used to analyze the changes of intracellular calcium. Fluorescence assay and immunofluorescence assays were performed to observe the changes of the mitochondrial permeability transition pore (MPTP). RESULTS: The overexpression of Csseverin in PLC cells showed apoptosis resistance after the induction of apoptosis. Additionally, the activation of caspase-3 and caspase-9 was specifically weakened in Csseverin overexpression PLC cells. The overexpression of Csseverin reduced the increase in intracellular free Ca2+, thereby inhibiting MPTP opening in PLC cells. Moreover, Bax mitochondrial translocation and the subsequent release of Cyt c were downregulated in apoptotic Csseverin overexpression PLC cells. CONCLUSIONS: The present findings suggest that Csseverin, a component of CsESPs, confers protection from human HCC cell apoptosis via the inactivation of membranous Ca2+ channels. Csseverin might be involved in the process of HCC through C. sinensis infestation in affected patients.


Subject(s)
Apoptosis/drug effects , Clonorchis sinensis/pathogenicity , Helminth Proteins/metabolism , Mitochondria/drug effects , Animals , Cell Line, Tumor , Cell Survival/drug effects , Humans
16.
Parasit Vectors ; 10(1): 295, 2017 Jun 17.
Article in English | MEDLINE | ID: mdl-28623940

ABSTRACT

BACKGROUND: Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. METHODS: A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. RESULTS: Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. CONCLUSIONS: CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.


Subject(s)
Clonorchiasis/complications , Clonorchis sinensis/enzymology , Interleukin-17/metabolism , Interleukins/metabolism , Liver Cirrhosis/etiology , Lysophospholipase/metabolism , Animals , Cell Line , Clonorchiasis/parasitology , Clonorchis sinensis/genetics , Humans , Interleukin-17/genetics , Interleukins/genetics , Liver Cirrhosis/parasitology , Lysophospholipase/genetics , MAP Kinase Signaling System , Macrophages/metabolism , Mice , Up-Regulation
17.
Parasitol Res ; 116(7): 1811-1822, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28502017

ABSTRACT

Clonorchiasis remains a nonnegligible public health problem in endemic areas. Cysteine protease of Clonorchis sinensis (CsCP) plays indispensable roles in the parasitic physiology and pathology, and has been exploited as a promising drug and vaccine candidate. In recent years, development of spore-based vaccines against multiple pathogens has attracted many investigators' interest. In previous studies, the recombinant Escherichia coli (BL21) and Bacillus subtilis spores expressing CsCP have been successfully constructed, respectively. In this study, the immune effects of CsCP protein purified from recombinant BL21 (rCsCP) and B. subtilis spores presenting CsCP (B.s-CsCP) in Balb/c mice model were conducted with comparative analysis. Levels of specific IgG, IgG1 and IgG2a were significantly increased in sera from both rCsCP and B.s-CsCP intraperitoneally immunized mice. Additionally, recombinant spores expressing abundant fusion CsCP (0.03125 pg/spore) could strongly enhance the immunogenicity of CsCP with significantly higher levels of IgG and isotypes. Compared with rCsCP alone, intraperitoneal administration of mice with spores expressing CsCP achieved a better effect of fighting against C. sinensis infection by slowing down the process of fibrosis. Our results demonstrated that a combination of Th1/Th2 immune responses could be elicited by rCsCP, while spores displaying CsCP prominently induced Th1-biased specific immune responses, and the complex cytokine network maybe mediates protective immune responses against C. sinensis. This work further confirmed that the usage of B. subtilis spores displaying CsCP is an effective way to against C. sinensis.


Subject(s)
Clonorchiasis/immunology , Clonorchis sinensis/enzymology , Clonorchis sinensis/immunology , Cysteine Proteases/immunology , Animals , Antibodies, Helminth/blood , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Clonorchiasis/parasitology , Clonorchis sinensis/genetics , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Helminth Proteins/genetics , Helminth Proteins/immunology , Helminth Proteins/metabolism , Immunization , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Spores, Bacterial/immunology , Vaccines/immunology
18.
Parasit Vectors ; 10(1): 262, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28545547

ABSTRACT

BACKGROUND: Long-term infections by Clonorchis sinensis are associated with cholangitis, cholecystitis, liver fibrosis, cirrhosis, and even liver cancer. Molecules from the worm play vital roles in disease progress. In the present study, we identified and explored molecular characterization of C. sinensis granulin (CsGRN), a growth factor-like protein from C. sinensis excretory/secretory products (CsESPs). METHODS: The encoding sequence and conserved domains of CsGRN were identified and analysed by bioinformatics tools. Recombinant CsGRN (rCsGRN) protein was expressed in Escherichia coli BL21 (DE3). The localisation of CsGRN in adult worms and Balb/c mice infected with C. sinensis was investigated by immunofluorescence and immunohistochemistry, respectively. Stable CsGRN-overexpressed cell lines of hepatoma cells (PLC-GRN cells) and cholangiocarcinoma cells (RBE-GRN cells) were constructed by transfection of eukaryotic expression plasmid of pEGFP-C1-CsGRN. The effects on cell migration and invasion of CsGRN were assessed through the wound-healing assay and transwell assay. The levels of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) in PLC-GRN or RBE-GRN cells were detected by real-time PCR (qRT-PCR). The levels of E-cadherin, vimentin, N-cadherin, zona occludens proteins (ZO-1), ß-catenin, phosphorylated ERK (p-ERK) and phosphorylated AKT (p-AKT) were analysed by Western blotting. RESULTS: CsGRN, including the conserved GRN domains, was confirmed to be a member of the granulin family. CsGRN was identified as an ingredient of CsESPs. CsGRN was localised in the tegument and testes of the adult worm. Furthermore, it appeared in the cytoplasm of hepatocytes and biliary epithelium cells from infected Balb/c mouse. The enhancement of cell migration and invasion of PLC-GRN and RBE-GRN cells were observed. In addition, CsGRN upregulated the levels of vimentin, N-cadherin, ß-catenin, MMP2 and MMP9, while it downregulated the level of ZO-1 in PLC-GRN/RBE-GRN cells. In total proteins of liver tissue from rCsGRN immunised Balb/c mice, vimentin level decreased, while E-cadherin level increased when compared with the control groups. Meanwhile, the levels of p-ERK reached a peak at 4 weeks post immunisation and the level of p-AKT did at 2 weeks after immunisation. CONCLUSIONS: The encoding sequence and molecular characteristics of CsGRN were identified. As a member of granulin superfamily, CsGRN induced mesenchymal characteristics of PLC and RBE cells and was found to regulate the activities of the downstream molecules of the ERK and PI3K/AKT signalling pathways, which could contribute to the enhancement of cell migration and invasion.


Subject(s)
Carcinoma, Hepatocellular/parasitology , Cholangiocarcinoma/parasitology , Clonorchis sinensis/metabolism , Helminth Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/parasitology , Animals , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Clonorchis sinensis/genetics , Clonorchis sinensis/isolation & purification , Female , Helminth Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Progranulins
19.
Fish Shellfish Immunol ; 64: 287-296, 2017 May.
Article in English | MEDLINE | ID: mdl-28323213

ABSTRACT

Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 106, 1 × 107, and 1 × 108 CFU g-1) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 107 CFU g-1) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish.


Subject(s)
Bacillus subtilis/genetics , Carps , Clonorchiasis/veterinary , Cysteine Proteases/metabolism , Dietary Supplements , Fish Diseases/prevention & control , Spores, Bacterial/immunology , Administration, Oral , Animals , Bacillus subtilis/metabolism , Clonorchiasis/immunology , Clonorchiasis/parasitology , Clonorchiasis/prevention & control , Clonorchis sinensis/chemistry , Diet/veterinary , Fish Diseases/immunology , Fish Diseases/parasitology , Helminth Proteins/metabolism , Immunity, Humoral , Immunity, Mucosal , Organisms, Genetically Modified , Probiotics , Random Allocation , Spores, Bacterial/genetics , Vaccines/immunology
20.
Parasit Vectors ; 10(1): 147, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28302166

ABSTRACT

BACKGROUND: Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. METHODS: Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. RESULTS: The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 µg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. CONCLUSIONS: Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding could provide a promising treatment strategy to interrupt the process of liver fibrosis caused by clonorchiasis.


Subject(s)
Clonorchis sinensis/enzymology , Hepatic Stellate Cells/physiology , MAP Kinase Signaling System/drug effects , Phospholipases A2, Secretory/pharmacology , Animals , Cloning, Molecular , Hepatic Stellate Cells/parasitology , Mice , Mice, Inbred BALB C , Phospholipases A2, Secretory/genetics , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...