Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4657, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822036

ABSTRACT

Microbial communities play a crucial role in ocean ecology and global biogeochemical processes. However, understanding the intricate interactions among diversity, taxonomical composition, functional traits, and how these factors respond to climate change remains a significant challenge. Here, we propose seven distinct ecological statuses by systematically considering the diversity, structure, and biogeochemical potential of the ocean microbiome to delineate their biogeography. Anthropogenic climate change is expected to alter the ecological status of the surface ocean by influencing environmental conditions, particularly nutrient and oxygen contents. Our predictive model, which utilizes machine learning, indicates that the ecological status of approximately 32.44% of the surface ocean may undergo changes from the present to the end of this century, assuming no policy interventions. These changes mainly include poleward shifts in the main taxa, increases in photosynthetic carbon fixation and decreases in nutrient metabolism. However, this proportion can decrease significantly with effective control of greenhouse gas emissions. Our study underscores the urgent necessity for implementing policies to mitigate climate change, particularly from an ecological perspective.


Subject(s)
Climate Change , Microbiota , Oceans and Seas , Seawater/microbiology , Ecosystem , Carbon Cycle , Biodiversity
2.
Appl Environ Microbiol ; 90(2): e0171923, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38193672

ABSTRACT

Application of organic fertilizers is an important strategy for sustainable agriculture. The biological source of organic fertilizers determines their specific functional characteristics, but few studies have systematically examined these functions or assessed their health risk to soil ecology. To fill this gap, we analyzed 16S rRNA gene amplicon sequencing data from 637 soil samples amended with plant- and animal-derived organic fertilizers (hereafter plant fertilizers and animal fertilizers). Results showed that animal fertilizers increased the diversity of soil microbiome, while plant fertilizers maintained the stability of soil microbial community. Microcosm experiments verified that plant fertilizers were beneficial to plant root development and increased carbon cycle pathways, while animal fertilizers enriched nitrogen cycle pathways. Compared with animal fertilizers, plant fertilizers harbored a lower abundance of risk factors such as antibiotic resistance genes and viruses. Consequently, plant fertilizers might be more suitable for long-term application in agriculture. This work provides a guide for organic fertilizer selection from the perspective of soil microecology and promotes sustainable development of organic agriculture.IMPORTANCEThis study provides valuable guidance for use of organic fertilizers in agricultural production from the perspective of the microbiome and ecological risk.


Subject(s)
Microbiota , Rhizosphere , Animals , Fertilizers , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Soil , Plants/genetics , Soil Microbiology , Plant Roots
3.
Phytother Res ; 38(3): 1478-1493, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234096

ABSTRACT

Hesperetin (HST) is a flavonoid compound naturally occurring in citrus fruits and is widespread in various traditional medicinal herbs such as grapefruit peel, orange peel, and tangerine peel. These plant materials are commonly used in traditional Chinese medicine to prepare herbal remedies. The study aimed to investigate the potential molecular mechanisms through which HST reduces ferroptosis in human umbilical vein endothelial cells (HUVECs) and promotes angiogenesis and wound healing. We employed network pharmacology to predict the downstream targets affected by HST. The expression of markers related to ferroptosis was assessed through Western blot (WB) and polymerase chain reaction. Intracellular levels of ferroptosis-related metabolism were examined using glutathione/oxidized glutathione (GSH/GSSG) and malondialdehyde (MDA) assay kits. Mitochondrial status and iron levels within the cells were investigated through staining with Mitosox, FerroOrange, and JC1 staining. Potential downstream direct targets of HST were identified using molecular docking. Additionally, wound healing and neovascularization within the wound site were analyzed using various methods including HE staining, Masson's staining, immunohistochemistry, and Doppler hemodynamics assessment. HST effectively inhibits the elevated levels of intracellular ferroptosis stimulated by ERASTIN. Furthermore, we observed that HST achieves this inhibition of ferroptosis by activating SIRT3. In a diabetic rat wound model, HST significantly promotes wound healing, reducing levels of tissue ferroptosis, consistent with our in vitro findings. This study demonstrates that HST can inhibit the progression of ferroptosis and protect the physiological function of HUVECs by activating SIRT3. HST holds promise as a natural compound for promoting diabetic wound healing.


Subject(s)
Diabetes Mellitus , Ferroptosis , Hesperidin , Sirtuin 3 , Humans , Animals , Rats , Molecular Docking Simulation , Glutathione , Human Umbilical Vein Endothelial Cells
4.
J Agric Food Chem ; 72(4): 2089-2099, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235689

ABSTRACT

Pesticides promote the stable development of intensive global agriculture. Nevertheless, their residues in the soil can cause ecological and human health risks. Glyphosate is a popular herbicide and is generally thought to be ecologically safe and nontoxic, but this conclusion has been questioned. Herein, we investigated the interaction among soil fauna (Enchytraeus crypticus) exposed to glyphosate and found that glyphosate induced oxidative stress and detoxification responses in E. crypticus and disturbed their lipid metabolism and digestive systems. We further demonstrated that glyphosate disordered the gut microbiota of E. crypticus and increased the abundance of resistance determinants with significant human health risks. Empirical tests and structural equation models were then used to confirm that glyphosate could cause E. crypticus to generate reactive oxygen species, indirectly interfering with their gut microbiota. Our study provides important implications for deciphering the mechanisms of the ecotoxicity of pesticides under the challenge of worldwide pesticide contamination.


Subject(s)
Gastrointestinal Microbiome , Oligochaeta , Pesticides , Soil Pollutants , Animals , Humans , Gastrointestinal Microbiome/physiology , Glyphosate , Soil/chemistry , Drug Resistance, Microbial , Soil Pollutants/toxicity , Soil Pollutants/analysis
5.
Sci Total Environ ; 858(Pt 1): 159847, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36461576

ABSTRACT

Knowledge of the dissemination and emergence of antibiotic resistance genes (ARGs) in the plant rhizosphere is essential for evaluating the risk of the modern ARGs in soil planetary health. However, little is known about the selection mechanism in the plant rhizosphere. Here, we firstly analyzed the dynamic changes in the rhizosphere antibiotic resistome during the process of three passage enrichment of the rhizosphere microbiome in Arabidopsis thaliana (Col-0) and found evidence that plants directionally enriched levels of beneficial functional bacteria with many ARGs. Using the metagenome, we next evaluated the enrichment potential of the resistome in four common crops (barley, indica rice, japonica rice, and wheat) and found that the wheat rhizosphere harbored more abundant ARGs. Therefore, we finally cultivated the rhizosphere microbiome of wheat for three generations and found that approximately 60 % of ARGs were associated with beneficial bacteria enriched in the wheat rhizosphere, which might enter the soil food web and threaten human health, despite also performing beneficial functions in the plant rhizosphere. Our study provides new insights into the dissemination of ARGs in the plant rhizosphere, and the obtained data may be useful for sustainable and ecologically safe agricultural development.


Subject(s)
Arabidopsis , Hordeum , Humans , Rhizosphere , Anti-Bacterial Agents , Triticum , Soil
6.
Front Microbiol ; 13: 1053153, 2022.
Article in English | MEDLINE | ID: mdl-36545194

ABSTRACT

With the widespread use of abamectin in agriculture, there is increasing urgency to assess the effects of abamectin on soil microorganisms. Here, we treated plant-soil microcosms with abamectin at concentrations of 0.1 and 1.0 mg/kg and quantified the impacts of abamectin on bulk and rhizosphere soil microbial communities by shotgun metagenomics after 7 and 21 days of exposure. Although abamectin was reported to be easily degradable, it altered the composition of the soil microbial communities, disrupted microbial interactions, and decreased community complexity and stability after 7 days of exposure. After treatment with abamectin at a concentration of 1.0 mg/kg, some opportunistic human diseases, and soil-borne pathogens like Ralstonia were enriched in the soil. However, most ecological functions in soil, particularly the metabolic capacities of microorganisms, recovered within 21 days after abamectin treatment. The horizontal and vertical gene transfer under abamectin treatments increased the levels of antibiotic resistance genes dissemination. Overall, our findings demonstrated the negative effects of abamectin on soil ecosystems in the short-term and highlight a possible long-term risk to public and soil ecosystem health associated with antibiotic resistance genes dissemination.

7.
Sci Total Environ ; 837: 155807, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35537509

ABSTRACT

The development of machine learning and deep learning provided solutions for predicting microbiota response on environmental change based on microbial high-throughput sequencing. However, there were few studies specifically clarifying the performance and practical of two types of binary classification models to find a better algorithm for the microbiota data analysis. Here, for the first time, we evaluated the performance, accuracy and running time of the binary classification models built by three machine learning methods - random forest (RF), support vector machine (SVM), logistic regression (LR), and one deep learning method - back propagation neural network (BPNN). The built models were based on the microbiota datasets that removed low-quality variables and solved the class imbalance problem. Additionally, we optimized the models by tuning. Our study demonstrated that dataset pre-processing was a necessary process for model construction. Among these 4 binary classification models, BPNN and RF were the most suitable methods for constructing microbiota binary classification models. Using these 4 models to predict multiple microbial datasets, BPNN showed the highest accuracy and the most robust performance, while the RF method was ranked second. We also constructed the optimal models by adjusting the epochs of BPNN and the n_estimators of RF for six times. The evaluation related to performances of models provided a road map for the application of artificial intelligence to assess microbial ecology.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Algorithms , High-Throughput Nucleotide Sequencing , Machine Learning , Support Vector Machine
8.
Environ Pollut ; 306: 119396, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35525510

ABSTRACT

Antibiotic resistance genes (ARGs) and virulence factors (VFs) are critical threats to human health. Their abundance in aquatic ecosystems is maintained and enhanced via selection driven by environmental xenobiotics. However, their activity and expression in these environments under xenobiotic stress remains unknown. Here ARG and VF expression profiles were examined in aquatic microcosms under ciprofloxacin, glyphosate and sertraline hydrochloride treatment. Ciprofloxacin increased total expression of ARGs, particularly multidrug resistance genes. Total expression of ARGs and VFs decreased significantly under glyphosate and sertraline treatments. However, in opportunistic human pathogens, these agents increased expression of both ARGs and VFs. Xenobiotic pollutants, such as the compounds we tested here, have the potential to disrupt microbial ecology, promote resistance, and increase risk to human health. This study systematically evaluated the effects of environmental xenobiotics on transcription of ARGs and VFs, both of which have direct relevance to human health. Transcription of such genes has been overlooked in previous studies.


Subject(s)
Virulence Factors , Xenobiotics , Anti-Bacterial Agents/toxicity , Ciprofloxacin , Drug Resistance, Microbial/genetics , Ecosystem , Genes, Bacterial , Humans , Virulence Factors/genetics , Xenobiotics/toxicity
9.
Appl Energy ; 317: 119136, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35492379

ABSTRACT

Global carbon emissions have been rapidly increasing in recent years, negatively influencing the global climate. Thereby, it is urgent to reduce carbon emissions and achieve carbon neutrality. During the COVID-19 pandemic, strict quarantine plans have led to a sharp decline in the number of international student flights, which will, in turn, decrease aviation carbon emissions. This study predicts the carbon emission reduction caused by the decrease in international student mobility during the COVID-19. The result shows that the carbon emission was about 1326 Gg, a staggering value equivalent to two-thirds of the carbon emissions of the UK's agriculture sector in a year. Furthermore, this study analyzes the implications of current mitigation policies and makes recommendations for future strategies.

10.
Environ Sci Pollut Res Int ; 29(19): 28256-28266, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34988791

ABSTRACT

Dichlorprop (2-(2,4-dichlorophenoxy) propionic acid, DCPP), a commonly used herbicide for weed control, can be residually detected in soil. It is still unclear whether chiral DCPP exerts an enantioselective adverse effect on plant metabolism and the microbial community of the phyllosphere. In this study, we selected Arabidopsis thaliana as a model plant to explore the effects of R- and S-DCPP enantiomers on plant physiological activities, metabolism, and associated changes in the phyllosphere microbial community. Results indicated that the fresh weight of plants decreased by 37.6% after R-DCPP treatment, whereas it increased by 7.6% after S-DCPP treatment. The R-DCPP enantiomer also caused stronger disturbance to leaf morphology, mesophyll cell structure, and leaf metabolites compared with S-DCPP. GC-MS analysis of DCPP-treated Arabidopsis leaves pointed out a differential profile mostly in carbohydrates, organic acids, and fatty acids, between S-DCPP and R-DCPP treatments. The diversity of phyllospheric microorganisms decreased and the stability of microbial community in the phyllosphere increased after R-DCPP treatment, whereas the opposite result was detected after S-DCPP exposure. The correlation analysis revealed that chiral herbicides may affect microbial communities in the phyllosphere by influencing leaf metabolism, while sugars and terpenoids were considered the main factors in reshaping the microbial community structure in the phyllosphere. Our study provides a new perspective for evaluating the effect of residual DCPP enantiomers on plant physiology and corresponding phyllosphere microorganism changes via the regulation of leaf metabolism, and clarifies the ecological risk of DCPP enantiomer application in agriculture.


Subject(s)
Arabidopsis , Herbicides , Microbiota , 2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , Herbicides/chemistry , Herbicides/pharmacology , Metabolome
12.
Chemosphere ; 294: 133742, 2022 May.
Article in English | MEDLINE | ID: mdl-35090847

ABSTRACT

Difenoconazole, a typical triazole fungicide, inhibits the activity of cytochrome P450 enzyme in fungi, and is extensively used in protecting fruits, vegetables, and cereal crops. However, reports elucidating the effects of difenoconazole on aquatic microbial communities are limited. Our study showed that difenoconazole promoted microalgae growth at concentrations ranging from 0.1 to 5 µg/L, which was similar with its environmental residual concentrations. Metagenomic analysis revealed that the aquatic microbial structure could self-regulate to cope with difenoconazole-induced stress by accumulating bacteria exhibiting pollutant degrading abilities. In the short-term, several functional pathways related to xenobiotic biodegradation and analysis were upregulated to provide ability for aquatic microbial community to process xenobiotic stress. Moreover, most disturbed ecological functions were recovered due to the redundancy of microbial communities after prolonged exposure. Furthermore, the risks associated with the dissemination of antibiotic resistance genes were enhanced by difenoconazole in the short-term. Overall, our study contributes to a comprehensive understanding of the difenoconazole-induced ecological impacts and the behavior of aquatic microbial communities that are coping with xenobiotic stress.


Subject(s)
Dioxolanes , Fungicides, Industrial , Microbiota , Dioxolanes/toxicity , Fresh Water , Fungicides, Industrial/metabolism , Triazoles/chemistry
13.
J Hazard Mater ; 423(Pt B): 127252, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34844364

ABSTRACT

Pesticides are continually entering the soil ecosystem because of safety assurance of high-yield food in agricultural intensification. It is highly urgent to evaluate their effects on the soil biota. This study characterized the dose-dependent changes in the gut bacterial and fungal community of Enchytraeus crypticus after oral exposure to an environmental dose of the fungicide azoxystrobin (AZ; 0.5, 1, and 10 mg/L) for 21 days. AZ not only induced the growth opportunistic pathogens and reduced the relative abundance of beneficial bacteria in the E. crypticus gut, but also destroyed the stability of the gut microecology of E. crypticus. Meanwhile, the dose-dependent effects of AZ were observed on the number and normalized abundance of antibiotic resistance genes (ARGs; copies/bacterial cell), and trace dose of AZ (> 0 and < 0.085 µg/individual) might enrich the ARG numbers in the gut of E. crypticus. Moreover, we used structural equation modeling to speculate that apart from mobile genetic elements and the bacterial community, the microbial interaction of E. crypticus gut might be another key contributor that drived the emergence and dissemination of ARGs. This study provides new perspectives in assessing the gut health of soil fauna under pesticide pollution in intensive agricultural production.


Subject(s)
Gastrointestinal Microbiome , Oligochaeta , Soil Pollutants , Animals , Anti-Bacterial Agents , Ecosystem , Gastrointestinal Microbiome/genetics , Genes, Bacterial , Pyrimidines , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Strobilurins
14.
Microbiome ; 9(1): 196, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593032

ABSTRACT

BACKGROUND: The ubiquitous gut microbiotas acquired from the environment contribute to host health. The gut microbiotas of soil invertebrates are gradually assembled from the microecological region of the soil ecosystem which they inhabit, but little is known about their characteristics when the hosts are under environmental stress. The rapid development of high-throughput DNA sequencing in the last decade has provided unprecedented insights and opportunities to characterize the gut microbiotas of soil invertebrates. Here, we characterized the core, transient, and rare bacterial taxa in the guts of soil invertebrates using the core index (CI) and developed a new theory of global microbial diversity of soil ecological microregions. RESULTS: We found that the Gammaproteobacteria could respond indiscriminately to the exposure to environmental concentrations of soil pollutants and were closely associated with the physiology and function of the host. Meanwhile, machine-learning models based on metadata calculated that Gammaproteobacteria were the core bacteria with the highest colonization potential in the gut, and further identified that they were the best indicator taxon of the response to environmental concentrations of soil pollution. Gammaproteobacteria also closely correlated with the abundance of antibiotic resistance genes. CONCLUSIONS: Our results determined that Gammaproteobacteria were an indicator taxon in the guts of the soil invertebrates that responded to environmental concentrations of soil pollutants, thus providing an effective theoretical basis for subsequent assessments of soil ecological risk. The results of the physiological and biochemical analyses of the host and the microbial-community functions, and the antibiotic resistance of Gammaproteobacteria, provide new insights for evaluating global soil ecological health. Video abstract.


Subject(s)
Gammaproteobacteria , Gastrointestinal Microbiome , Microbiota , Soil Pollutants , Gammaproteobacteria/genetics , Gastrointestinal Microbiome/genetics , Soil , Soil Microbiology , Soil Pollutants/analysis
15.
Sci Total Environ ; 797: 149015, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34346373

ABSTRACT

Over 40% of herbicides used today are chiral. Dichlorprop (2, 4-DCPP) is a widely used typical broad-spectrum chiral aryloxyphenoxy propionic acid (AOPP) herbicide. However, the molecular mechanism of the enantioselectivity of DCPP enantiomers (S-DCPP and R-DCPP) and their effects on non-target organisms are remain unclear. In the present study, the model plant Arabidopsis thaliana was treated by DCPP enantiomers to directly reveal the effects of DCPP enantiomers on plant growth, as well as metabolic profile. Results showed that the enantioselectivity embodied in that R-DCPP treatment led to the decrease of shoot weight, the significantly variation on morphology of shoot and root, oxidative damage, et al., while the plant morphology also changes to a certain extent associated oxidative damage after treated by S-DCPP. By using metabolomic analysis, it was found that R-DCPP had significant effects on A. thaliana leaf metabolism, including lactose metabolism, starch and sucrose metabolism, TCA cycle, fatty acid biosynthesis pathway and pentose phosphate pathway, and accumulated a lot of antioxidants in plant leaves, while the amino acids and some terpenoids increased in S-DCPP group. Our study provides a new direction to explore the relationship between chiral herbicides on leaf metabolism, and the effect of this relationship on the plant growth.


Subject(s)
Arabidopsis , Herbicides , 2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , Herbicides/toxicity , Plant Leaves , Stereoisomerism
16.
Sci Total Environ ; 795: 148865, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34246136

ABSTRACT

Cyanobacterial blooms constitute a global ecological problem that can seriously threaten human health. One of the most common bloom-forming cyanobacteria in freshwater is Microcystis aeruginosa, whose secretion of toxic substances (microcystins, MCs) have strong liver toxicity and endanger the health of exposed people through contaminated aquatic products and drinking water. However, few studies on the neurotoxicity of M. aeruginosa to zebrafish have simulated the process of an actual cyanobacterial bloom. In this study, we used the zebrafish (Danio rerio) as an effective model organism to study the acute neurotoxicity of M. aeruginosa, and to clarify its principal mechanism of action. A total of 82 upregulated and 26 downregulated proteins were detected by quantitative proteomics analysis in zebrafish brain after exposure to M. aeruginosa. Intriguingly, these proteins with changed expression were related to Synaptic vesicle cycle and terpenoid skeleton biosynthesis pathway, such as ACAT, STX1A, and V-ATPase. The obtained results uniformly indicated that the neurotoxicity of M. aeruginosa seriously damaged the neurotransmitter conduction in the nervous system and brain information storage and transmission of zebrafish and makes it more susceptible to neurological diseases. Our study provides a new perspective on the neurotoxicity risk of cyanobacterial blooms.


Subject(s)
Microcystis , Zebrafish , Animals , Brain , Fresh Water , Humans , Microcystins/toxicity , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...