Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
1.
Sports Health ; : 19417381241264493, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108063

ABSTRACT

BACKGROUND: Quadriceps and hamstring strength deficits are related to the increased risk of reinjury after anterior cruciate ligament reconstruction (ACLR). HYPOTHESIS: Knee angle-specific quadriceps and hamstring strength differences would be observed in patients with ACLR 6 and 12 months after surgery. STUDY DESIGN: Case-series. LEVEL OF EVIDENCE: Level 4. METHODS: A total of 23 postprimary unilateral ACLR patients followed-up at 6 and 12 months postoperatively and 25 controls were included. Isokinetic knee extension and flexion strength were evaluated at 60 deg/s from 20° to 90°. Statistical parametric mapping were performed to explore the angle-specific strength and the limb symmetry index (LSI). RESULTS: At 6 months postoperatively, the reconstructed leg demonstrated lower knee extension and flexion strength than the contralateral (20°-77°, 24°-90°) (P < 0.01) and control legs (22°-90°, 40°-82°) (P < 0.01). From 6 months to 12 months, knee extension (60°-90°) and flexion (20°-79°) strength improved in the reconstructed leg (P < 0.05), while LSI remained unchanged (P > 0.02). At 12 months, knee extension strength differences persisted in the reconstructed leg compared with the contralateral (20°-81°) and controls (25°-63°) (P < 0.01). ACLR patients had lower LSI of knee extension strength at 6 (20°-59°) and 12 (24°-57°) months postoperatively than the controls (P < 0.02). CONCLUSION: The reconstructed leg exhibited differences in knee extension strength compared with the contralateral and control legs. Although bilateral knee extension strength increased from 6 to 12 months postoperatively, LSI did not show improvement during this period. CLINICAL RELEVANCE: Quadriceps restoration was observed only in knee flexion angles greater than 60° compared with controls. Future studies should investigate whether knee extension strength, especially in lower flexion angles, can be enhanced through rehabilitation programs. Furthermore, assessing the impact of this improvement on long-term outcomes and reinjury risk in ACLR patients is warranted.

2.
Int J Biol Macromol ; 275(Pt 1): 133505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960225

ABSTRACT

Electromagnetic interference (EMI) shielding materials play a vital role in human society, especially in light of the rapid development of electronic communication equipment. Therefore, it is urgent to develop green, high-efficiency EMI shielding materials. Wood, as a renewable raw material, possesses significant structural advantages in studying EMI materials due to its unique 3D pore structure. Herein, we report magnetoelectric lignocellulosic matrix composites derived from the delignified wood for efficient EMI shielding. The composite was fabricated by in-situ polymerization of PEDOT conductive coating and magnetic Fe3O4 in delignified wood. The conductive 3D pore structure of Fe3O4/PEDOT@wood could effectively cause dielectric loss and multiple internal reflections. Combined with the magnetic loss of Fe3O4, the material exhibited excellent EMI shielding effectiveness (SE), which could be attributed to the synergistic effect of dielectric and magnetic losses. The Fe3O4/PEDOT@wood showed excellent conductivity (103 S/m), good magnetism (26.7 emu/g), the EMI SE up to 59.8 dB, and high SEA/SET ratios of∼84.2 % to 95.7 % at 2 mm in X -band. Moreover, the material exhibited a high compressive strength and tensile strength of 100.8 MPa and 18.1 MPa, respectively. Therefore, this work provided a reference for the preparation of high-efficiency EMI shielding materials.


Subject(s)
Lignin , Lignin/chemistry , Porosity , Wood/chemistry , Electromagnetic Phenomena , Electric Conductivity , Tensile Strength
3.
Front Cell Dev Biol ; 12: 1407738, 2024.
Article in English | MEDLINE | ID: mdl-39022762

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.

4.
J Crit Care ; 84: 154880, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024824

ABSTRACT

PURPOSE: To assess the association between fluctuations of arterial carbon dioxide early after start of extracorporeal membrane oxygenation (ECMO) with intracranial hemorrhage (ICH) or ischemic stroke (IS). MATERIALS AND METHODS: This single-center retrospective study included patients who required ECMO for circulatory or respiratory failure between January 2011 and April 2021 and for whom a cerebral computed tomography (cCT) scan was available. Multivariable logistic regression models were fitted to evaluate the association between the relative change of arterial carbon dioxide (RelΔPaCO2) and ICH, IS or a composite of ICH, IS, and mortality. RESULTS: In 618 patients (venovenous ECMO: n = 295; venoarterial ECMO: n = 323) ICH occurred more frequently in patients with respiratory failure (19.0%) compared with patients with circulatory failure (6.8%). Conversely, the incidence of IS was higher in patients with circulatory failure (19.2%) compared with patients with respiratory failure (4.7%). While patients with ECMO for respiratory failure were more likely to have ICH (OR 3.683 [95% CI: 1.855;7.309], p < 0.001), they had a lower odds for IS (OR 0.360 [95%CI: 0.158;0.820], p = 0.015) compared with patients with circulatory failure. There was no significant association between RelΔPaCO2 and ICH or IS. CONCLUSIONS: Irrespective of the indication for ECMO, we did not find a significant association between the relative change in PaCO2 early after ECMO initiation and acute brain injury. Aside from early PaCO2 decline at cannulation, future studies should address fluctuations of PaCO2 throughout the course of ECMO support and their effect on acute brain injury.

5.
J Orthop Translat ; 47: 39-49, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007037

ABSTRACT

Sclerostin emerges as a novel target for bone anabolic therapy in bone diseases. Osteogenesis imperfecta (OI) and X-linked hypophosphatemia (XLH) are rare bone diseases in which therapeutic potential of sclerostin inhibition cannot be ignored. In OI, genetic/pharmacologic sclerostin inhibition promoted bone formation of mice, but responses varied by genotype and age. Serum sclerostin levels were higher in young OI-I patients, while lower in adult OI-I/III/IV. It's worth investigating whether therapeutic response of OI to sclerostin inhibition could be clinically predicted by genotype and age. In XLH, preclinical/clinical data suggested factors other than identified FGF23 contributing to XLH. Higher levels of circulating sclerostin were detected in XLH. Sclerostin inhibition promoted bone formation in Hyp mice, while restored phosphate homeostasis in age-/gender-dependent manner. The role of sclerostin in regulating phosphate metabolism deserves investigation. Sclerostin/FGF23 levels of XLH patients with/without response to FGF23-antibody warrants study to develop precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy. Notably, OI patients were associated with cardiovascular abnormalities, so were XLH patients receiving conventional therapy. Targeting sclerostin loop3 promoted bone formation without cardiovascular risks. Further, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety. The Translational Potential of this Article. Preclinical data on the molecular understanding of sclerostin inhibition in OI and therapeutic efficacy in mouse models of different genotypes, as well as clinical data on serum sclerostin levels in patients with different phenotypes of OI, were reviewed and discussed. Translationally, it would facilitate to develop clinical prediction strategies (e.g. based on genotype and age, not just phenotype) for OI patients responsive to sclerostin inhibition. Both preclinical and clinical data suggested sclerostin as another factor contributing to XLH, in addition to the identified FGF23. The molecular understanding and therapeutic effects of sclerostin inhibition on both promoting bone anabolism and improving phosphate homostasis in Hyp mice were reviewed and discussed. Translationaly, it would facilitate the development of precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy for the treatment of XLH. Cardiovascular risk could not be ruled out during sclerostin inhibition treatment, especially for OI and XLH patients with cardiovascular diseases history and cardiovascular abnormalities. Studies on the role of sclerostin in inhiting bone formation and protecting cardiovascular system were reviewed and discussed. Translationaly, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety.

6.
Perioper Med (Lond) ; 13(1): 69, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982526

ABSTRACT

The purpose of this study is to systematically analyze the development trend, research hotspots, and future development direction on the treatment of neuropathic pain (NP) with spinal cord stimulation through bibliometric method. We extracted the literature related to the treatment of NP with spinal cord stimulation from January 2004 to December 2023 from the Web of Science database. As a result, a total of 264 articles were retrieved. By analyzing the annual published articles, authors, countries, institutions, journals, co-cited literature, and keywords, we found that the count of publication in this field has been experiencing an overall growth, and the publications within the past 5 years accounted for 42% of the total output. Experts from the United States and the UK have made significant contributions in this field and established a stable collaborative team, initially establishing an international cooperation network. Pain is the frequently cited journal in this field. The study on spinal cord stimulation therapy for NP especially the study on spinal cord stimulation therapy for back surgery failure syndrome (FBSS) and its potential mechanisms are the research hotspots in this field, while the study on novel paradigms such as high-frequency spinal cord stimulation and spinal cord burst stimulation represents the future development directions. In short, spinal cord stimulation has been an effective treatment method for NP. The novel paradigms of spinal cord stimulation are the key point of future research in this field.

7.
Small ; : e2405101, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051511

ABSTRACT

Carbon quantum dots (CQDs) have attracted more attentions due to their multiple performances. However, the fabrication of long-wavelength emitting CQDs with aliphatic precursors still remains a challenge, mainly because it is difficult to generate large sp2 domains to reduce energy gap, which is not conducive to a redshift of the luminescence peak. Hereon, by regulating the pH of citric acid and thiourea mixture, a N, S co-doped CQD emitting bright red fluorescence at 635 nm is successfully fabricated through the solvothermal reaction under acidic condition, achieving a high quantum yield of 32.66%. Solvatochromic effects of the CQDs are discussed through theoretical equations and models, which confirm that the hydrogen-bonding interaction dominates the fluorescence emission behavior of CQDs in polar solvents. Besides, a feasible strategy is proposed to prepare an anti-counterfeiting textile via the deposition of red-emitting CQDs onto cotton fibers, through rapidly evaporating the preferred organic solvent. As expected, the CQD-decorated textiles exhibit encouraging anti-counterfeiting and security-warning functions, along with underwater and long-distance detectability, washability, and sun resistance. It is worth noting that the present work is innovative in realizing the application of red-light-emitting CQDs in the fields of security-warning textiles.

8.
Int J Biol Macromol ; 273(Pt 2): 133156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878932

ABSTRACT

The environmental benefits of utilizing protease as a biocatalyst for wool shrink-resist finishing have been widely recognized. However, the efficacy of individual protease treatment is unsatisfactory due to its incapability towards the outermost cuticle layer of wool fibers that contains hydrophobic fatty acids. In order to weaken the structural integrity of the highly cross-linked scales and promote the enzymatic anti-felting, sodium sulfite and tris (2-carboxyethyl) phosphine hydrochloride (TCEP) were employed in combination with papain, respectively, aiming at obtaining a low shrinkage without unacceptable fiber damages. Based on the synergistic effect of papain and TCEP, the edges of wool scales were slightly destroyed by the reduction of disulfide bonds, accompanied by enzymatic hydrolysis of the keratin component. Through the controlled reduction and hydrolysis of wool scales, satisfactory anti-felting result was achieved without causing severe damage to the fiber interiors. In the presence of 0.25 g/L TCEP and 25 U/mL papain, the area shrinkage of wool fabric decreased to approximately 6 %, with a low strength loss of less than 8 %. Meanwhile, the dyeing behavior of the wool fabric under low-temperature conditions was dramatically improved, leading to decreased energy consumption during production. The present work provides an alternative for eco-friendly finishing of wool fabrics, which can be applied commercially.


Subject(s)
Disulfides , Papain , Wool , Papain/chemistry , Animals , Wool/chemistry , Disulfides/chemistry , Reducing Agents/chemistry , Sulfites/chemistry , Sulfites/pharmacology , Phosphines/chemistry , Wool Fiber , Hydrolysis , Textiles
9.
Int J Biol Macromol ; 273(Pt 1): 133066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866294

ABSTRACT

To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.


Subject(s)
Metals, Heavy , Muramidase , Wastewater , Metals, Heavy/chemistry , Wastewater/chemistry , Animals , Muramidase/chemistry , Muramidase/isolation & purification , Muramidase/metabolism , Transglutaminases/chemistry , Transglutaminases/metabolism , Transglutaminases/isolation & purification , Wool/chemistry , Water Purification/methods , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Adsorption , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/isolation & purification , Amyloidogenic Proteins/metabolism , Wool Fiber , Protein Aggregates , Amyloid/chemistry
10.
Biomolecules ; 14(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38927077

ABSTRACT

Accurate identification of spatial domains is essential in the analysis of spatial transcriptomics data in order to elucidate tissue microenvironments and biological functions. However, existing methods only perform domain segmentation based on local or global spatial relationships between spots, resulting in an underutilization of spatial information. To this end, we propose SECE, a deep learning-based method that captures both local and global relationships among spots and aggregates their information using expression similarity and spatial similarity. We benchmarked SECE against eight state-of-the-art methods on six real spatial transcriptomics datasets spanning four different platforms. SECE consistently outperformed other methods in spatial domain identification accuracy. Moreover, SECE produced spatial embeddings that exhibited clearer patterns in low-dimensional visualizations and facilitated a more accurate trajectory inference.


Subject(s)
Deep Learning , Humans , Transcriptome/genetics , Gene Expression Profiling/methods , Computational Biology/methods , Algorithms
11.
Phytomedicine ; 130: 155704, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759316

ABSTRACT

BACKGROUND: Dysregulation of vascular smooth muscle cell (VSMC) function leads to a variety of diseases such as atherosclerosis and hyperplasia after injury. However, antiproliferative drug targeting VSMC exhibits poor specificity. Therefore, there is an urgent to develop highly specific antiproliferative drugs to prevention and treatment VSMC dedifferentiation associated arteriosclerosis. Kanglexin (KLX), a new anthraquinone compound designed by our team, has potential to regulate VSMC phenotype according to the physicochemical properties. PURPOSE: This project aims to evaluate the therapeutic role of KLX in VSMC dedifferentiation and atherosclerosis, neointimal formation and illustrates the underlying molecular mechanism. METHODS: In vivo, the ApoE-/- mice were fed with high-fat diet (HFD) for a duration of 13 weeks to establish the atherosclerotic model. And rat carotid artery injury model was performed to establish the neointimal formation model. In vitro, PDGF-BB was used to induce VSMC dedifferentiation. RESULTS: We found that KLX ameliorated the atherosclerotic progression including atherosclerotic lesion formation, lipid deposition and collagen deposition in aorta and aortic sinus in atherosclerotic mouse model. In addition, The administration of KLX effectively ameliorated neointimal formation in the carotid artery following balloon injury in SD rats. The findings derived from molecular docking and surface plasmon resonance (SPR) experiments unequivocally demonstrate that KLX had potential to bind PDGFR-ß. Mechanism research work proved that KLX prevented VSMC proliferation, migration and dedifferentiation via activating the PDGFR-ß-MEK -ERK-ELK-1/KLF4 signaling pathway. CONCLUSION: Collectively, we demonstrated that KLX effectively attenuated the progression of atherosclerosis in ApoE-/- mice and carotid arterial neointimal formation in SD rats by inhibiting VSMC phenotypic conversion via PDGFR-ß-MEK-ERK-ELK-1/KLF4 signaling. KLX exhibits promising potential as a viable therapeutic agent for the treatment of VSMC phenotype conversion associated arteriosclerosis.


Subject(s)
Anthraquinones , Cell Dedifferentiation , Kruppel-Like Factor 4 , Muscle, Smooth, Vascular , Neointima , Animals , Male , Mice , Rats , Anthraquinones/pharmacology , Arteriosclerosis/drug therapy , Arteriosclerosis/prevention & control , Atherosclerosis/drug therapy , Becaplermin/pharmacology , Carotid Artery Injuries/drug therapy , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects , Diet, High-Fat , Disease Models, Animal , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Neointima/drug therapy , Rats, Sprague-Dawley , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects
12.
Oncogene ; 43(27): 2078-2091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760447

ABSTRACT

The aberrant activation of RAS/RAF/MEK/ERK signaling is important for KIT mutation-mediated tumorigenesis of gastrointestinal stromal tumor (GIST). In this study, we found that inhibition of RAF1 suppresses the activation of both wild-type KIT and primary KIT mutations in GIST, with primary KIT mutations showing greater sensitivity. This suggests a positive feedback loop between KIT and RAF1, wherein RAF1 facilitates KIT signaling. We further demonstrated that RAF1 associates with KIT and the kinase activity of RAF1 is necessary for its contribution to KIT activation. Accordingly, inhibition of RAF1 suppressed cell survival, proliferation, and cell cycle progression in vitro mediated by both wild-type KIT and primary KIT mutations. Inhibition of RAF1 in vivo suppressed GIST growth in a transgenic mouse model carrying germline KIT/V558A mutation, showing a similar treatment efficiency as imatinib, the first-line targeted therapeutic drug of GIST, while the combination use of imatinib and RAF1 inhibitor further suppressed tumor growth. Acquisition of drug-resistant secondary mutation of KIT is a major cause of treatment failure of GIST following targeted therapy. Like wild-type KIT and primary KIT mutations, inhibition of RAF1 suppressed the activation of secondary KIT mutation, and the cell survival, proliferation, cell cycle progression in vitro, and tumor growth in vivo mediated by secondary KIT mutation. However, the activation of secondary KIT mutation is less dependent on RAF1 compared with that of primary KIT mutations. Taken together, our results revealed that RAF1 facilitates KIT signaling and KIT mutation-mediated tumorigenesis of GIST, providing a rationale for further investigation into the use of RAF1 inhibitors alone or in combination with KIT inhibitor in the treatment of GIST, particularly in cases resistant to KIT inhibitors.


Subject(s)
Gastrointestinal Stromal Tumors , Proto-Oncogene Proteins c-kit , Proto-Oncogene Proteins c-raf , Signal Transduction , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Gastrointestinal Stromal Tumors/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Animals , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-raf/genetics , Humans , Mice , Mice, Transgenic , Cell Proliferation , Cell Line, Tumor , Mutation , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism
13.
Ecotoxicol Environ Saf ; 279: 116489, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38776781

ABSTRACT

Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 µm) exhibited more pronounced combined toxicity than PS-MP (1 µm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.


Subject(s)
Apoptosis , Flame Retardants , Membrane Potential, Mitochondrial , Microplastics , Nanoparticles , Polystyrenes , Reactive Oxygen Species , Humans , Hep G2 Cells , Polystyrenes/toxicity , Polystyrenes/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Flame Retardants/toxicity , Microplastics/toxicity , Reactive Oxygen Species/metabolism , Particle Size , Organophosphates/toxicity , Water Pollutants, Chemical/toxicity , Adsorption , Plastics/toxicity
14.
Anal Methods ; 16(20): 3179-3191, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738644

ABSTRACT

Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.


Subject(s)
Extracellular Vesicles , Ultracentrifugation , Extracellular Vesicles/chemistry , Humans , Ultracentrifugation/methods , Chromatography, Gel/methods , Animals , Ultrafiltration/methods
15.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629424

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Subject(s)
Gastrointestinal Stromal Tumors , LIM-Homeodomain Proteins , Muscle Proteins , Proto-Oncogene Proteins c-kit , Signal Transduction , Transcription Factors , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Gastrointestinal Stromal Tumors/metabolism , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Humans , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Imatinib Mesylate/pharmacology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , Cell Line, Tumor , Ubiquitination
16.
Nat Commun ; 15(1): 3591, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678022

ABSTRACT

Proton pump inhibitors (PPIs) are commonly used for gastric acid-related disorders, but their safety profile and risk stratification for high-burden diseases need further investigation. Analyzing over 2 million participants from five prospective cohorts from the US, the UK, and China, we found that PPI use correlated with increased risk of 15 leading global diseases, such as ischemic heart disease, diabetes, respiratory infections, and chronic kidney disease. These associations showed dose-response relationships and consistency across different PPI types. PPI-related absolute risks increased with baseline risks, with approximately 82% of cases occurring in those at the upper 40% of the baseline predicted risk, and only 11.5% of cases occurring in individuals at the lower 50% of the baseline risk. While statistical association does not necessarily imply causation, its potential safety concerns suggest that personalized use of PPIs through risk stratification might guide appropriate decision-making for patients, clinicians, and the public.


Subject(s)
Proton Pump Inhibitors , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/therapeutic use , Humans , Risk Assessment , Male , Female , Middle Aged , China/epidemiology , United Kingdom/epidemiology , Aged , Prospective Studies , United States/epidemiology , Adult , Precision Medicine , Renal Insufficiency, Chronic/chemically induced , Myocardial Ischemia/chemically induced , Myocardial Ischemia/epidemiology , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Respiratory Tract Infections/epidemiology , Diabetes Mellitus/chemically induced , Diabetes Mellitus/epidemiology , Risk Factors
17.
Theranostics ; 14(6): 2345-2366, 2024.
Article in English | MEDLINE | ID: mdl-38646645

ABSTRACT

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Subject(s)
Histone Deacetylase 6 , Mice, Transgenic , Nerve Growth Factor , Ovarian Follicle , Ubiquitination , Animals , Female , Humans , Mice , Acetylation , Granulosa Cells/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Nerve Growth Factor/metabolism , Ovarian Follicle/metabolism
18.
Int J Biol Macromol ; 267(Pt 1): 131448, 2024 May.
Article in English | MEDLINE | ID: mdl-38593901

ABSTRACT

Nowadays, various harmful indoor pollutants especially including bacteria and residual formaldehyde (HCHO) seriously threaten human health and reduce the quality of public life. Herein, a universal substrate-independence finishing approach for efficiently solving these hybrid indoor threats is demonstrated, in which amine-quinone network (AQN) was employed as reduction agent to guide in-situ growth of Ag@MnO2 particles, and also acted as an adhesion interlayer to firmly anchor nanoparticles onto diverse textiles, especially for cotton fabrics. In contrast with traditional hydrothermal or calcine methods, the highly reactive AQN ensures the efficient generation of functional nanoparticles under mild conditions without any additional catalysts. During the AQN-guided reduction, the doping of Ag atoms onto cellulose fiber surface optimized the crystallinity and oxygen vacancy of MnO2, providing cotton efficient antibacterial efficiency over 90 % after 30 min of contact, companying with encouraging UV-shielding and indoor HCHO purification properties. Besides, even after 30 cycles of standard washing, the Ag@MnO2-decorated textiles can effectively degrade HCHO while well-maintaining their inherent properties. In summary, the presented AQN-mediated strategy of efficiently guiding the deposition of functional particles on fibers has broad application prospects in the green and sustainable functionalization of textiles.


Subject(s)
Amines , Cellulose , Manganese Compounds , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Cellulose/chemistry , Amines/chemistry , Quinones/chemistry , Silver/chemistry , Formaldehyde/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Textiles , Air Pollution, Indoor/prevention & control
19.
Front Microbiol ; 15: 1362316, 2024.
Article in English | MEDLINE | ID: mdl-38450165

ABSTRACT

Streptococcus suis serotype 2 (SS2) is a Gram-positive bacterium. It is a common and significant pathogen in pigs and a common cause of zoonotic meningitis in humans. It can lead to sepsis, endocarditis, arthritis, and pneumonia. If not diagnosed and treated promptly, it has a high mortality rate. The pan-genome of SS2 is open, and with an increasing number of genes, the core genome and accessory genome may exhibit more pronounced differences. Due to the diversity of SS2, the genes related to its virulence and resistance are still unclear. In this study, a strain of SS2 was isolated from a pig farm in Sichuan Province, China, and subjected to whole-genome sequencing and characterization. Subsequently, we conducted a Pan-Genome-Wide Association Study (Pan-GWAS) on 230 strains of SS2. Our analysis indicates that the core genome is composed of 1,458 genes related to the basic life processes of the bacterium. The accessory genome, consisting of 4,337 genes, is highly variable and a major contributor to the genetic diversity of SS2. Furthermore, we identified important virulence and resistance genes in SS2 through pan-GWAS. The virulence genes of SS2 are mainly associated with bacterial adhesion. In addition, resistance genes in the core genome may confer natural resistance of SS2 to fluoroquinolone and glycopeptide antibiotics. This study lays the foundation for further research on the virulence and resistance of SS2, providing potential new drug and vaccine targets against SS2.

20.
Mol Ther Nucleic Acids ; 35(1): 102146, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38444701

ABSTRACT

Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility and bone formation. Sclerostin could negatively regulate bone formation by antagonizing the Wnt signal pathway, whereas it imposes severe cardiac ischemic events in clinic. Our team has screened an aptamer that could promote bone anabolic potential without cardiovascular risk. However, the affinity of the aptamer is lower and needs to be improved. In the study, hydrophobic quinoline molecule with unique orientations (seven subtypes) were incorporated into key sites of a bone anabolic aptamer against sclerostin to form a modified aptamer library. Among all the quinoline modifications, 5-quinoline modification could shape the molecular recognition of modified aptamers to sclerostin to facilitate enhancing its binding to sclerostin toward the highest affinity by interacting with newly participated binding sites in sclerostin. Further, 5-quinoline modification could facilitate the modified aptamer attenuating the suppressed effect of the transfected sclerostin on both Wnt signaling and bone formation marker expression levels in vitro, promoting bone anabolism in OI mice (Col1a2+/G610C). The proposed quinoline-oriented modification strategy could shape the molecular recognition of modified aptamers to proteins to facilitate enhancing its binding affinity and therapeutic potency.

SELECTION OF CITATIONS
SEARCH DETAIL