Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(3): 2576-2597, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534780

ABSTRACT

The rpl1001 gene encodes 60S ribosomal protein L10, which is involved in intracellular protein synthesis and cell growth. However, it is not yet known whether it is involved in the regulation of cell mitosis dynamics. This study focuses on the growth, spore production, cell morphology, the dynamics of microtubules, chromosomes, actin, myosin, and mitochondria of fission yeast (Schizosaccharomyces pombe) to investigate the impact of rpl1001 deletion on cell mitosis. RNA-Seq and bioinformatics analyses were also used to reveal key genes, such as hsp16, mfm1 and isp3, and proteasome pathways. The results showed that rpl1001 deletion resulted in slow cell growth, abnormal spore production, altered cell morphology, and abnormal microtubule number and length during interphase. The cell dynamics of the rpl1001Δ strain showed that the formation of a monopolar spindle leads to abnormal chromosome segregation with increased rate of spindle elongation in anaphase of mitosis, decreased total time of division, prolonged formation time of actin and myosin loops, and increased expression of mitochondrial proteins. Analysis of the RNA-Seq sequencing results showed that the proteasome pathway, up-regulation of isp3, and down-regulation of mfm1 and mfm2 in the rpl1001Δ strain were the main factors underpinning the increased number of spore production. Also, in the rpl1001Δ strain, down-regulation of dis1 caused the abnormal microtubule and chromosome dynamics, and down-regulation of hsp16 and pgk1 were the key genes affecting the delay of actin ring and myosin ring formation. This study reveals the effect and molecular mechanism of rpl1001 gene deletion on cell division, which provides the scientific basis for further clarifying the function of the Rpl1001 protein in cell division.

2.
Int J Mol Med ; 46(6): 2194-2206, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33125111

ABSTRACT

Mitochondrial fission and fusion dynamics are critical cellular processes, and abnormalities in these processes are associated with severe human disorders, such as Beckwith­Wiedemann syndrome, neurodegenerative diseases, Charcot­Marie­Tooth disease type 6, multiple symmetric lipomatosis and microcephaly. Fuzzy onions protein 1 (Fzo1p) regulates mitochondrial outer membrane fusion. In the present study, Schizosaccharomyces pombe (S. pombe) was used to explore the effect of FZO1 gene deletion on cell dynamics in mitosis. The mitochondrial morphology results showed that the mitochondria appeared to be fragmented and tubular in wild­type cells; however, they were observed to accumulate in fzo1Δ cells. The FZO1 gene deletion was demonstrated to result in slow proliferation, sporogenesis defects, increased microtubule (MT) number and actin contraction defects in S. pombe. The FZO1 gene deletion also affected the rate of spindle elongation and phase time at the metaphase and anaphase, as well as spindle MT organization. Live­cell imaging was performed on mutant strains to observe three distinct kinetochore behaviors (normal, lagging and mis­segregation), as well as abnormal spindle breakage. The FZO1 gene deletion resulted in coenzyme and intermediate metabolite abnormalities as determined via metabolomics analysis. It was concluded that the loss of FZO1 gene resulted in deficiencies in mitochondrial dynamics, which may result in deficiencies in spindle maintenance, chromosome segregation, spindle breakage, actin contraction, and coenzyme and intermediate metabolite levels.


Subject(s)
Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Actins/metabolism , Cell Division , Chromosomes, Fungal/metabolism , Coenzymes/metabolism , Energy Metabolism , Gene Deletion , Metabolome , Mitochondria/metabolism , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/metabolism , Spindle Apparatus/metabolism , Spores, Fungal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL