Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 132(19)2022 10 03.
Article in English | MEDLINE | ID: mdl-36189795

ABSTRACT

Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1ß, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.


Subject(s)
Mevalonate Kinase Deficiency , Animals , Body Temperature , Fever , GTP Phosphohydrolases/genetics , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Lipopolysaccharides/metabolism , Mevalonate Kinase Deficiency/drug therapy , Mevalonate Kinase Deficiency/genetics , Mevalonate Kinase Deficiency/metabolism , Mevalonic Acid/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Prenylation
2.
J Rheumatol ; 29(4): 787-95, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11950023

ABSTRACT

OBJECTIVE: The antiinflammatory effects of glucocorticoids are mediated by several mechanisms, including inhibition of nuclear factor-kappaB (NF-kappaB) nuclear translocation and DNA binding. This mechanism is not evident in some cell types, including endothelial cells and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). We determined the effect of glucocorticoids and tumor necrosis factor (TNF) on nuclear localization and DNA binding of the transcription factor NF-kappaB in osteoarthritic (OA) synovial tissue. METHODS: Explants of synovial tissue from patients undergoing joint replacement surgery for arthritis were placed in culture and treated with dexamethasone 10(-6) M for 18 h and again at 30 min prior to stimulation with TNF for a further 30 min. NF-kappaB and AP-1 DNA binding activities were determined by electrophoretic mobility shift analysis of nuclear extracts prepared from 6 whole tissue explants. Nuclear localization of NF-kappaB was determined by quantitative immunohistochemistry for Rel-A(p65) in thin sections of 5 synovial tissue explants. RESULTS: TNF induced NF-kappaB nuclear translocation and DNA binding in all OA synovial tissue explants, although there were no consistent effects on AP-1 DNA binding. Dexamethasone reduced TNF stimulated nuclear translocation of RelA(p65) in all 5 OA synovial explants analyzed by immunohistochemistry. Dexamethasone partially decreased NF-kappaB DNA binding in 5 of 6 TNF stimulated explants and 4 of 6 unstimulated explants. In cultured rheumatoid arthritis and OA fibroblast-like synoviocytes and Mono Mac 6 cells the effects of dexamethasone on NF-kappaB DNA binding were not evident. CONCLUSION: Dexamethasone partially inhibits TNF induced NF-kappaB DNA binding in human synovial tissue. It is feasible to use explants of intact fresh human synovium as a substrate for the action of antirheumatic drugs targeting a transcription factor.


Subject(s)
Anti-Inflammatory Agents/pharmacology , DNA/metabolism , Dexamethasone/pharmacology , NF-kappa B/biosynthesis , Osteoarthritis , Synovial Membrane/drug effects , Cells, Cultured , DNA-Binding Proteins/metabolism , Drug Combinations , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , NF-kappa B/antagonists & inhibitors , Osteoarthritis/metabolism , Osteoarthritis/pathology , Recombinant Proteins , Synovial Membrane/metabolism , Synovial Membrane/pathology , Transcription Factor AP-1/metabolism , Transcription Factor RelA , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL