Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 5293349, 2022.
Article in English | MEDLINE | ID: mdl-35252449

ABSTRACT

Carbonic anhydrases (CAs and EC 4.2.1.1) are the Zn2+ containing enzymes which catalyze the reversible hydration of CO2 to carbonate and proton. If they are not functioning properly, it would lead towards many diseases including tumor. Synthesis of hydrazide-sulfonamide hybrids (19-36) was carried out by the reaction of aryl (10-11) and acyl (12-13) hydrazides with substituted sulfonyl chloride (14-18). Final product formation was confirmed by FT-IR, NMR, and EI-MS. Density functional theory (DFT) calculations were performed on all the synthesized compounds to get the ground-state geometries and compute NMR properties. NMR computations were in excellent agreement with the experimental NMR data. All the synthesized hydrazide-sulfonamide hybrids were in vitro evaluated against CA II, CA IX, and CA XII isozymes for their carbonic anhydrase inhibition activities. Among the entire series, only compounds 22, 32, and 36 were highly selective inhibitors of hCA IX and did not inhibit hCA XII. To investigate the binding affinity of these compounds, molecular docking studies of compounds 32 and 36 were carried out against both hCA IX and hCA XII. By using BioSolveIT's SeeSAR software, further studies to provide visual clues to binding affinity indicate that the structural elements that are responsible for this were also studied. The binding of these compounds with hCA IX was highly favorable (as expected) and in agreement with the experimental data.


Subject(s)
Carbonic Anhydrase II , Carbonic Anhydrases , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases/metabolism , Hydrazines/pharmacology , Molecular Docking Simulation , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Sulfonamides/pharmacology
2.
Molecules ; 27(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056676

ABSTRACT

In the present study, pyrazole-thiophene-based amide derivatives were synthesized by different methodologies. Here, 5-Bromothiophene carboxylic acid (2) was reacted with substituted, unsubstituted, and protected pyrazole to synthesize the amide. It was observed that unsubstituted amide (5-bromo-N-(5-methyl-1H-pyrazol-3-yl)thiophene-2-carboxamide (7) was obtained at a good yield of about 68 percent. The unsubstituted amide (7) was arylated through Pd (0)-catalyzed Suzuki-Miyaura cross-coupling, in the presence of tripotassium phosphate (K3PO4) as a base, and with 1,4-dioxane as a solvent. Moderate to good yields (66-81%) of newly synthesized derivatives were obtained. The geometry of the synthesized compounds (9a-9h) and other physical properties, like non-linear optical (NLO) properties, nuclear magnetic resonance (NMR), and other chemical reactivity descriptors, including the chemical hardness, electronic chemical potential, ionization potential, electron affinity, and electrophilicity index have also been calculated for the synthesized compounds. In this study, DFT calculations have been used to investigate the electronic structure of the synthesized compounds and to compute their NMR data. It was also observed that the computed NMR data manifested significant agreement with the experimental NMR results. Furthermore, compound (9f) exhibits a better non-linear optical response compared to all other compounds in the series. Based on frontier molecular orbital (FMO) analysis and the reactivity descriptors, compounds (9c) and (9h) were predicted to be the most chemically reactive, while (9d) was estimated to be the most stable among the examined series of compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...