ABSTRACT
We developed and analyzed an Enzyme-Linked Immunosorbent Assay (ELISA) in order to detect antibodies in sera from sporotrichosis patients. We used a crude antigen of Sporothrix schenckii sensu stricto, obtained from the mycelial phase of the fungi. Positive sera were analyzed by other serological techniques such as double immunodiffusion (IGG) and counterimmunoelectrophoresis (CIE). The assay was validated by using sera from patients with other pathologies such as: histoplasmosis, paracoccidioidomycosis, tuberculosis, leishmaniasis, lupus and healthy individuals as negative controls. For the Sporothrix schenckii sensu stricto antigen, we found a 100% of specificity by every technique and sensitivity higher than 98% with IDD, CIE and ELISA. Our results show a high sensitivity and specificity for the Sporothrix schenckii sensu stricto antigen, so it can be used for IDD, CIE and ELISA. The results suggest that this antigen could be used in conjunction with other conventional tests for differential diagnosis and may be useful for monitoring the disease progression and response to treatment.
Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Sporothrix/isolation & purification , Sporotrichosis/diagnosis , Antigens, Fungal/immunology , Counterimmunoelectrophoresis/methods , Female , Humans , Immunodiffusion/methods , Male , Mycelium , Sensitivity and Specificity , Serologic Tests/methods , Sporothrix/immunology , Sporotrichosis/immunologyABSTRACT
Pulmonary vascular remodeling is a process generally associated with pulmonary hypertension that involves intimal thickening, medial hyperthrophy, and plexiform lesions. Morphological studies during pulmonary hypertension have indicated that intimal thickening consists of immature smooth muscle cells (SMCs) associated with determined extracellular matrix components, suggesting an important role for these cells in vascular lesions. Controversy exists regarding the nature and origin of the cells conforming the intimal thickenings. In this study, the authors characterized the in vivo phenotype of the cells located in the pulmonary artery wall during the advanced stages of chicken embryo development and examined whether intimal thickenings are present in such stages. Immunolabeling of cryosections demonstrated presence of intimal thickenings composed of mesenchymal cells that may arise from the endothelium. These cells persist either as nonmuscle throughout the development, or possibly convert to cells expressing alpha -smooth muscle actin (alpha-SM actin). To determine whether pulmonary endothelial cells undergo a transition to mesenchymal cells, the authors used pulmonary artery explants from 10- to 11-day-old chicken embryos and found that explanted endothelial cells detached from the monolayer and acquired mesenchymal characteristics. Some of these cells maintained immunoreactivity for von Willebrand factor (vWF), whereas other jointly lost vWF and gained alpha -SM actin expression (transitional cells), suggesting conversion to SMCs. Therefore, these findings strongly support the authors' in vivo observations and demonstrate that embryonic pulmonary endothelial cells undergo a transition to mesenchymal cells and participate in intimal thickening formation and pulmonary vascular remodeling.