Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Type of study
Publication year range
1.
Braz J Med Biol Res ; 43(12): 1193-202, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21140097

ABSTRACT

The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker's yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker's yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 µmol/kg, respectively, 4 h after yeast injection) attenuated baker's yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker's yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker's yeast-induced increases of IL-1ß or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.


Subject(s)
Antioxidants/pharmacology , Antipyretics/pharmacology , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Animals , Antipyretics/chemistry , Cyclooxygenase 1/pharmacology , Cyclooxygenase 2/pharmacology , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Male , Pyrazoles/chemistry , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(12): 1193-1202, Dec. 2010. ilus
Article in English | LILACS | ID: lil-569003

ABSTRACT

The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5 percent Tween 80 in 0.9 percent NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82 percent, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42 percent reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.


Subject(s)
Animals , Male , Rats , Antioxidants/pharmacology , Antipyretics/pharmacology , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Antipyretics/chemistry , Cyclooxygenase 1/pharmacology , /pharmacology , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Pyrazoles/chemistry , Rats, Wistar , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
3.
Braz J Med Biol Res ; 39(6): 795-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16751986

ABSTRACT

The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 micromol/kg, s.c.) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 +/- 6.15; B50 (8 micromol/kg): 16.92 +/- 3.84; B50 (23 micromol/kg): 13.85 +/- 3.84; B50 (80 micromol/kg): 9.54 +/- 3.08; data are reported as means +/- SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 micromol/kg, s.c.) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 +/- 3.15; vehicle-naloxone: 27.41 +/- 3.70; B50 (80 micromol/kg)-saline: 8.70 +/- 3.33; B50 (80 micromol/kg)-naloxone: 31.84 +/- 4.26; morphine-saline: 2.04 +/- 3.52; morphine-naloxone: 21.11 +/- 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.


Subject(s)
Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Thiazoles/pharmacology , Acetic Acid , Animals , Dose-Response Relationship, Drug , Male , Mice , Motor Activity/drug effects , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pyrazoles/chemistry , Reaction Time , Thiazoles/chemistry
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;39(6): 795-799, June 2006. graf
Article in English | LILACS | ID: lil-428270

ABSTRACT

The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1 H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 µmol/kg, sc) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 ± 6.15; B50 (8 µmol/kg): 16.92 ± 3.84; B50 (23 µmol/kg): 13.85 ± 3.84; B50 (80 µmol/kg): 9.54 ± 3.08; data are reported as means ± SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 µmol/kg, sc) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 ± 3.15; vehicle-naloxone: 27.41 ± 3.70; B50 (80 µmol/kg)-saline: 8.70 ± 3.33; B50 (80 µmol/kg)-naloxone: 31.84 ± 4.26; morphine-saline: 2.04 ± 3.52; morphine-naloxone: 21.11 ± 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.


Subject(s)
Animals , Male , Mice , Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Thiazoles/pharmacology , Acetic Acid , Dose-Response Relationship, Drug , Motor Activity/drug effects , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pyrazoles/chemistry , Reaction Time , Thiazoles/chemistry
5.
J Inorg Biochem ; 99(9): 1853-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16098596

ABSTRACT

Long time ago aluminum (Al) was considered as a non-toxic element and its use had no restrictions. However, over the last two decades, scientific publications have indicated that Al is a toxic element. In line with this, aluminum accumulation in the organism is associated with a variety of human pathologies. Efficient therapeutics approach to treat Al intoxication are still not available, but there is a consensus that chelation therapy is the procedure to be used. However, the development of new chelating agents are highly desirable to improve the efficacy of the treatment of Al intoxication. The present study evaluates the chelating effect of two novel pyrimidines: 4-tricloromethyl-1-H-pyrimidin-2-one (THP) and (4-methyl-6-trifluoromethyl-6-pyrimidin-2-il)-hydrazine (MTPH) in a mice model of aluminum intoxication and compares their efficacy with those of desferrioxamine (DFO), a classical agent used for treat Al accumulation. The animals were exposed to aluminum by gavage (0.1 mmol aluminum/kg/day) 5 days/week for 4 weeks. At the end of this period, DFO was injected i.p. and the novel pyrimidines were given by gavage at 0.2 mmol/kg/day for five consecutive days. Aluminum concentration in tissues (brain, liver, kidney and blood) was determined by graphite furnace atomic absorption spectroscopy (GFAAS). The results showed that when administered by gavage, aluminum accumulated in the brain, kidney and liver of mice. MTPH was able to decrease aluminum levels in aluminum plus citrate animal groups, whereas THP was inefficient for this purpose. However, the novel pyrimidines used in this study were unable to surpass the aluminum chelating property of DFO. Thus, new studies must be performed utilizing other chelating agents which can decrease aluminum toxicity.


Subject(s)
Aluminum/toxicity , Chelating Agents/chemistry , Models, Chemical , Pyrimidines/chemistry , Aluminum/chemistry , Animals , Male , Mice
6.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;37(10): 1531-1540, Oct. 2004. tab, graf
Article in English | LILACS | ID: lil-383035

ABSTRACT

The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5 percent Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.


Subject(s)
Animals , Male , Mice , Analgesics , Pain Measurement , Pyrazoles , Analysis of Variance , Dose-Response Relationship, Drug , Reaction Time , Receptors, Opioid , Restraint, Physical
7.
Braz J Med Biol Res ; 37(10): 1531-40, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15448875

ABSTRACT

The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5% Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 +/- 0.2; Pz 2 = 5.2 +/- 0.4; Pz 3 = 5.9 +/- 0.4 s; mean +/- SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 micro mol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.


Subject(s)
Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Male , Mice , Reaction Time , Receptors, Opioid/drug effects , Restraint, Physical
8.
J Nat Prod ; 64(7): 997-9, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11473447

ABSTRACT

Two new cyclopeptides, named discarene C (1) and discarene D (2), have been isolated from the bark of Discaria americana, along with seven known cyclopeptide alkaloids. The structures of the new compounds were determined by spectroscopic methods, mainly NMR. The stereochemistry of the ring amino acid residues have been assigned by gas chromatography employing modified cyclodextrins as chiral stationary phases.


Subject(s)
Alkaloids/isolation & purification , Peptides, Cyclic/isolation & purification , Plants, Medicinal/chemistry , Alkaloids/chemistry , Brazil , Chromatography, Gas , Chromatography, Thin Layer , Leucine/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Peptides, Cyclic/chemistry , Phenylalanine/chemistry , Plant Roots/chemistry , Spectrophotometry, Infrared , Stereoisomerism
9.
Neurochem Res ; 25(7): 949-55, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10959491

ABSTRACT

This study examines the effect of new 1,5 benzodiazepines on acetylcholinesterase (AChE) and ATPDase (apyrase) activities from cerebral cortex of adult rats. Simultaneously, the effects of the classical 1,4-benzodiazepine on these enzymes were also studied for comparative purpose. The compounds 2-trichloromethyl-4-phenyl-3H-1,5-benzodiazepin and 2-trichloromethyl-4(p-methyl-phenyl)-3H- 1,5-benzodiazepin significantly inhibited acetylcholinesterase activity (p < 0.01) when tested in the range of 0.18-0.35 mM. The inhibition caused by these two new benzodiazepines was noncompetitive in nature. Similarly, at concentrations ranging from 0.063 to 0.25 mM, the 1,5 benzodiazepines inhibited ATP and ADP hydrolysis by synaptosomes from cerebral cortex (p < 0.01). However, the inhibition of nucleotide hydrolysis was uncompetitive in nature. Our results suggest that, although diazepam and the new benzodiazepines have chemical differences, they both presented an inhibitory effect on acetylcholinesterase and ATPDase activities.


Subject(s)
Acetylcholinesterase/metabolism , Apyrase/metabolism , Benzodiazepines/pharmacology , Adenosine Diphosphate/antagonists & inhibitors , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Hydrolysis , Kinetics , Male , Rats , Rats, Wistar
10.
Biochem Syst Ecol ; 28(9): 907-910, 2000 Nov 01.
Article in English | MEDLINE | ID: mdl-10913853
SELECTION OF CITATIONS
SEARCH DETAIL