Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Syndromol ; 15(4): 269-274, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119445

ABSTRACT

Background: Hereditary hearing loss is a genetically heterogeneous neurosensory disorder that affects many people. Deafness and infertility can coexist in some cases, creating the hearing impairment infertile male syndrome. There are several known molecular mechanisms that can cause deafness either on its own or in conjunction with infertility. Methods and Results: Here, we represent two consanguineous families (A, B), both families had clinical evidence of deafness, and family B also had infertility, so we referred to them as having nonsyndromic hearing loss (NSHL) and hearing impairment infertile male syndrome (HIIMS), respectively. These families' genetic makeup was examined using an Affymetrix GeneChip 250K Nsp array followed by Sanger sequencing. In family A, we identified a novel homozygous stop gain variant [NM_003672.4; c.1000C>T; p.(Gln334*)] and a homozygous missense variant [NM_003672.4; c.684C>A; p.(Asn228Lys)] in family B in CDC14A gene (MIM#603504). In animal models, the CDC14A gene causes both hearing loss and infertility; in addition, it also causes NSHL and HIIMS in humans. Conclusions: Our study on the CDC14A gene has identified two novel variants, crucial for delineating disease boundaries. Variants in exon 10 and upstream cause HIIMS, and those in exon 11 and downstream are linked exclusively to hearing impairment. This precision enhances diagnostics and offers potential for targeted interventions, marking a significant advancement in understanding the genetic basis of these conditions.

2.
Clin Genet ; 106(3): 347-353, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38774940

ABSTRACT

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.


Subject(s)
Dwarfism , Exome Sequencing , Mutation , Pedigree , Humans , Female , Male , Dwarfism/genetics , Child , Pakistan/epidemiology , Genetic Predisposition to Disease , Homozygote , Phenotype , Syndrome , Child, Preschool , Adolescent , Genetic Association Studies
3.
Int J Dev Neurosci ; 83(2): 191-200, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36527195

ABSTRACT

Neurodevelopmental disorders (NDDs) are classified as a group of disorders affecting function and development of the brain and having wide clinical variability. Herein, we describe two affected individuals segregating a recessive NDD. The affected individuals exhibited phenotypes such as global developmental delay (GDD), intellectual disability (ID), microcephaly and speech delay. Whole-exome sequencing (WES) followed by bidirectional Sanger sequencing techniques identified a homozygous nonsense variant (c.466C > T; p.Gln156*) in the PPFIBP1 gene (NM_003622.4) that segregated with the disease phenotype. Further, to elucidate the effect of the variant on protein structure, 3D protein modelling was performed for the mutant and normal protein that suggested substantial reduction of the mutant protein. Our data support the evidence that PPFIBP1 has a pivotal role in neurodevelopment in humans, and loss-of-function variants cause clinically variable neurodevelopmental phenotypes.


Subject(s)
Intellectual Disability , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Carrier Proteins/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Brain , Proteins/genetics , Phenotype , Adaptor Proteins, Signal Transducing/genetics
4.
Front Genet ; 14: 1308116, 2023.
Article in English | MEDLINE | ID: mdl-38283150

ABSTRACT

Background: Neurodevelopmental disorders are characterized by different combinations of intellectual disability (ID), communication and social skills deficits, and delays in achieving motor or language milestones. SLITRK2 is a postsynaptic cell-adhesion molecule that promotes neurite outgrowth and excitatory synapse development. Methods and Results: In the present study, we investigated a single patient segregating Neurodevelopmental disorder. SLITRK2 associated significant neuropsychological issues inherited in a rare X-linked fashion have recently been reported. Whole-exome sequencing and data analysis revealed a novel nonsense variant [c.789T>A; p.(Cys263*); NM_032539.5; NP_115928.1] in exon 5 of the SLITRK2 gene (MIM# 300561). Three-dimensional protein modeling revealed substantial changes in the mutated SLITRK2 protein, which might lead to nonsense-medicated decay. Conclusion: This study confirms the role of SLITRK2 in neuronal development and highlights the importance of including the SLITRK2 gene in the screening of individuals presenting neurodevelopmental disorders.

SELECTION OF CITATIONS
SEARCH DETAIL