Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Food Res Int ; 155: 111070, 2022 05.
Article in English | MEDLINE | ID: mdl-35400448

ABSTRACT

Nine steaming nine sun-drying is a traditional processing technology for food or medicinal materials. The dynamic changes of the proximate composition, protein structure and volatile compounds during nine-time steaming and sun-drying of black soybeans (BS) were studied. The proximate composition results showed that the content of protein, carbohydrate and fat of BS decreased after processing, whereas the relative content of amino acids remained basically unchanged. Protein structure was evaluated using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet absorption spectroscopy (UV) and Fluorescence spectroscopy. FT-IR result revealed that the relative contents of ß-sheet and ß-turn of the secondary structure of black soybean protein isolate (BSPI) decreased but the relative contents of α-helix and random coil increased after steaming and sun-drying. The results of UV and fluorescence spectroscopy confirmed changes in the protein conformation. In addition, SPME-GCMS analysis demonstrated that hydrocarbons, alcohols and aldehydes were the main volatile compounds. The relative contents of 1-octen-3-ol and hexanal, which are the main sources of beany flavor decreased significantly compared with raw BS. Principal component analysis (PCA) results showed that the volatile compounds of nine steamed and nine sun-dried BS could be well distinguished during the process. These findings may therefore provide a scientific basis for the application of nine-time steamed and sun-dried BS in food industry and contribute to the understanding of process-induced chemical transformations in this ancient processing technique.


Subject(s)
Desiccation , Glycine max , Amino Acids/analysis , Desiccation/methods , Glycine max/chemistry , Spectroscopy, Fourier Transform Infrared , Steam/analysis
2.
J Food Sci ; 87(3): 1009-1019, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35122243

ABSTRACT

Biofortification using inorganic selenium has become an effective strategy to enhance selenium content in crops. In the present study, the effects of selenium biofortification on the chemical composition and antioxidant capacity of black soybean (BS) during germination were studied. The contents of selenium, total sugar, vitamin C, γ-aminobutyric acid, total polyphenols, and total flavonoids in selenium biofortified germinated black soybeans (GBS-Se) significantly increased compared to germinated black soybeans (GBS). However, the contents of soluble protein, fat, and reducing sugar were decreased, while fatty acid composition was not significantly different between GBS and BS. HPLC analysis showed that 12 phenolic acids of all samples, which mainly existed in free forms. Their contents increased at low concentration of selenium and decreased along with the rise of selenium concentrations. The antioxidant activity of GBS-Se as analyzed by Pearson correlation analysis positively correlated with the accumulation of phenolic substances. Principal component analysis (PCA) showed that GBS and GBS-Se were significantly different from BS. Moreover, the physicochemical indexes of GBS showed regularly changes with increasing selenium content, and those of GBS-Se50 and GBS-Se75 were significantly different from GBS. The results provide a systematic evaluation on the effect of selenium fortification on the germination of seeds and useful information for the development of Se-enriched functional foods. PRACTICAL APPLICATION: The organic selenium black soybean (BS) produced by the germination method can be directly processed and eaten to improve human health. In addition, complexes of organic selenium, vitamin C, and γ-aminobutyric acid of germinated BS can be developed into functional substances and applied to food or health products as functional ingredient and/or natural antioxidant supplements.


Subject(s)
Fabaceae , Selenium , Antioxidants/chemistry , Biofortification/methods , Fabaceae/chemistry , Humans , Seeds/chemistry , Selenium/analysis , Glycine max/chemistry
3.
Braz J Med Biol Res ; 53(4): e9288, 2020.
Article in English | MEDLINE | ID: mdl-32294702

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Diabetic Nephropathies/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/physiology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Cells, Cultured , Diabetic Nephropathies/genetics , Down-Regulation , Humans , MicroRNAs/metabolism , Real-Time Polymerase Chain Reaction , Up-Regulation
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 232: 118176, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32106026

ABSTRACT

This preliminary research evaluated mid-infrared (MIR) spectroscopy, near-infrared (NIR) spectroscopy and electronic nose (E-nose) for the rapid identification of Notopterygium incisum and Notopterygium franchetii, which were both approved sources of Notopterygii Rhizoma et Radix (Chinese Pharmacopoeia, 2015) but possessed different chemical compositions and pharmacological activities. At the level of single variables, MIR showed quite a few discriminating peaks in the regions of 3000-2800 cm-1 (the stretching bands of CH), 1770-1670 cm-1 (the stretching bands of CO), and 1400-1200 cm-1 (the bending bands of CH and the stretching bands of CO). Meanwhile, NIR only showed an intuitive discriminating peak near 4736 cm-1 (the combination band of OH and CO stretching modes). E-nose response signals of N. incisum and N. franchetii were significant different (p < 0.05) on four sensors, i.e., LY2/LG, LY2/GH, LY2/gCT and LY2/gCTI. Using the infrared spectra or E-nose sensor responses as fingerprints, support vector machine (SVM) models can provide good recognition accuracy (100% for MIR and NIR models, 92.9% for E-nose model). This research indicated the feasibility of MIR, NIR and E-nose for the accurate, rapid, cheap and green identification of N. incisum and N. franchetii, which was desirable to assure the authenticity, efficacy and safety of related herb materials and products.


Subject(s)
Apiaceae/chemistry , Drugs, Chinese Herbal/chemistry , Apiaceae/classification , Drugs, Chinese Herbal/classification , Electronic Nose , Spectroscopy, Fourier Transform Infrared/methods , Support Vector Machine
5.
Braz. j. med. biol. res ; 53(4): e9288, 2020. graf
Article in English | LILACS | ID: biblio-1089349

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Subject(s)
Humans , Diabetic Nephropathies/metabolism , Bone Morphogenetic Protein 7/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/physiology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Down-Regulation , Up-Regulation , Cells, Cultured , MicroRNAs/metabolism , Diabetic Nephropathies/genetics , Real-Time Polymerase Chain Reaction
6.
Braz. j. med. biol. res ; 53(4): e9288, 2020.
Article in English | LILACS-Express | LILACS | ID: biblio-1439698

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.

SELECTION OF CITATIONS
SEARCH DETAIL