Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
J Transl Med ; 22(1): 447, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741132

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Apigenin , Mitochondrial Dynamics , Neuroprotective Agents , Reperfusion Injury , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mitochondrial Dynamics/drug effects , Male , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Models, Biological , Mice, Inbred C57BL
2.
NPJ Genom Med ; 9(1): 6, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38245557

Inherited retinal diseases (IRDs) are a group of common primary retinal degenerative disorders. Conventional genetic testing strategies, such as panel-based sequencing and whole exome sequencing (WES), can only elucidate the genetic etiology in approximately 60% of IRD patients. Studies have suggested that unsolved IRD cases could be attributed to previously undetected structural variants (SVs) and intronic variants in IRD-related genes. The aim of our study was to obtain a definitive genetic diagnosis by employing whole genome sequencing (WGS) in IRD cases where the causative genes were inconclusive following an initial screening by panel sequencing. A total of 271 unresolved IRD patients and their available family members (n = 646) were screened using WGS to identify pathogenic SVs and intronic variants in 792 known ocular disease genes. Overall, 13% (34/271) of IRD patients received a confirmed genetic diagnosis, among which 7% were exclusively attributed to SVs, 4% to a combination of single nucleotide variants (SNVs) and SVs while another 2% were linked to intronic variants. 22 SVs, 3 deep-intronic variants, and 2 non-canonical splice-site variants across 14 IRD genes were identified in the entire cohort. Notably, all of these detected SVs and intronic variants were novel pathogenic variants. Among those, 74% (20/27) of variants were found in genes causally linked to Retinitis Pigmentosa (RP), with the gene EYS being the most frequently affected by SVs. The identification of SVs and intronic variants through WGS enhances the genetic diagnostic yield of IRDs and broadens the mutational spectrum of known IRD-associated genes.

3.
Ann Transl Med ; 11(11): 382, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37970593

Background: Radix Salviae (Danshen)-Angelicae Sinensis Radix (Danggui)-Lycii Fructus (Gouqizi)-Rehmanniae Radix Praeparata (Shudihuang)-Ginkgo Folium (Yinxinye) (RALRG) are commonly used herbs in China that have shown positive effects on retinitis pigmentosa (RP). However, little research has been performed on the impact of RALRG and RP. Herein, this study aimed to predict the mechanism and potential components of RALRG in treating RP. Methods: The ingredients of RALRG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP); the potential targets of RP and RALRG were obtained from TCMSP, GeneCards, and the Online Mendelian Inheritance in Man (OMIM) database. A protein-protein interaction (PPI) network was constructed to visualize PPIs. The functional enrichment was performed with the R program. A visual RALRG-RP-pathway pharmacology network was established by Cytoscape 3.9.1. Molecular docking was used to perform molecular docking and calculate the binding affinity. Results: A total of 132 effective active ingredients in RALRG with 248 target genes were screened; 92 intersection target genes were acquired from the intersection of RP- and RALRG-related genes. Gene Ontology (GO) enrichment indicated that these intersection targets were mainly involved in oxidative stress, metal ion response, and chemical stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the PI3K-AKT, cellular senescence, and MAPK signaling pathways were closely related to the therapy of RP. In addition, a potential pharmacology network for RALRG-RP-pathway was constructed. AKT1 and JUN were considered the primary targets. Luteolin, quercetin, and kaempferol were identified as the vital three active ingredients. Conclusions: RALRG was found to be the main regulator for oxidative stress and PI3K/AKT signaling pathways. Luteolin, quercetin, and kaempferol were three promising complementary ingredients for RP treatment. This study may provide a theoretical basis for applying RALRG to screen potential drugs for RP.

4.
Breed Sci ; 73(3): 246-260, 2023 Jun.
Article En | MEDLINE | ID: mdl-37840976

Sweetpotato variety breeding is always a long process. Screening of hybrid offspring is dominated by empirical judgment in this process. Data analysis and decision fatigue have been troubling breeders. In recent years, the low-efficiency screening mode has been unable to meet the requirements of sweetpotato germplasm innovation. Therefore, it is necessary to construct a high-efficiency method that can screen germplasms for different usages, for mining elite genotypes, and to create dedicated sweetpotato varieties. In this article, the multicriteria decision-making (MCDM) model was constructed based on six agronomic traits, including fresh root yield, vine length, vine diameter, branch number, root number and the spatial distribution of storage roots, and five quality traits, including dry matter content, marketable root yield, uniformity of roots, starch content and the edible quality score. Among these, the edible quality score was calculated by using fuzzy comprehensive evaluation to integrate the sensory scores of color, odor, sweetness, stickiness and fibrous taste. The MCDM model was compared with the traditional screening method via an evaluation in 25 sweetpotato materials. The interference of subjective factors on the evaluation results was significantly reduced. The MCDM model is more overall, more accurate and faster than the traditional screening method in the selection of elite sweetpotato materials. It could be programmed to serve the breeders in combination with the traditional screening method.

5.
SAGE Open Med Case Rep ; 11: 2050313X231187977, 2023.
Article En | MEDLINE | ID: mdl-37529077

A 69-year-old man was admitted to the hospital for a left femoral neck fracture. A preliminary chest computed tomography scan showed no coracoid process fracture. The patient had no history of trauma during his hospitalization. However, subsequent in-hospital computed tomography scan revealed bilateral coracoid process fracture. The patient underwent hip replacement surgery for femoral neck fracture, while conservative treatment was administered for the bilateral coracoid process fracture. After 1-year follow-up, the patient was diagnosed with bilateral insufficiency fracture of coracoid process after ruling out other types of fractures. The fractures did not heal while functions in both shoulders were adequate. Insufficiency fracture should be considered when fractures occur without trauma, especially in the presence of associated risk factors such as chronic renal failure and osteoporosis. For bilateral insufficiency fracture of coracoid process, conservative treatment is acceptable.

6.
Mol Genet Genomic Med ; 11(9): e2196, 2023 09.
Article En | MEDLINE | ID: mdl-37337769

BACKGROUND: To identify the mutational spectrum in a Chinese cohort with congenital cataracts. METHODS: Probands (n = 164) with congenital cataracts and their affected or unaffected available family members were recruited for clinical examinations and panel-based next-generation sequencing, then classified into a cohort for further mutational analysis. RESULTS: After recruitment (n = 442; 228 males and 214 females), 49.32% (218/442) of subjects received a clinical diagnosis of congenital cataracts, and 56.88% (124/218) of patients received a molecular diagnosis. Eighty-four distinct variants distributed among 43 different genes, including 42 previously reported variants and 42 novel variants, were detected, and 49 gene variants were causally associated with patient phenotypes; 27.37% of variants (23/84) were commonly detected in PAX6, GJA8 and CRYGD, and the three genes covered 33.06% of cases (41/124) with molecular diagnosis. The majority of genes were classified as genes involved in nonsyndromic congenital cataracts (19/43, 44.19%) and were responsible for 56.45% of cases (70/124). The majority of functional and nucleotide changes were missense variants (53/84, 63.10%) and substitution variants (74/84, 88.10%), respectively. Nine de novo variants were identified. CONCLUSION: This study provides a reference for individualized genetic counseling and further extends the mutational spectrum of congenital cataracts.


Cataract , East Asian People , Female , Humans , Male , Cataract/congenital , Cataract/genetics , Mutation , Mutation, Missense , Pedigree
7.
Polymers (Basel) ; 15(9)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37177254

Because of the increasing scarcity of water resources, the desalination of seawater by photothermal evaporation with harvested solar energy has gradually become a popular research topic. The interconnected macroporous cryogel prepared from polymerization and crosslinking below the freezing temperature of the reactant solution has an excellent performance in photothermal water evaporation after loading photothermal materials. In this study, polyacrylamide (PAM) cryogels were prepared by cryo-polymerization and sulfonated in an alkaline solution containing formaldehyde and Na2SO3. Importantly, the evaporation enthalpy of water in sulfonated PAM cryogel was reduced to 1187 J·g-1 due to the introduction of sulfonate groups into PAM, which was beneficial to increase the photothermal evaporation rate and efficiency. The sulfonated PAM cryogels loaded with polypyrrole and the umbrella-shaped melamine foam substrate were combined to form a photothermal evaporation device, and the evaporation rate was as high as 2.50 kg·m-2·h-1 under one-sun radiation. Meanwhile, the evaporation rate reached 2.09 kg·m-2·h-1 in the 14 wt% high-concentration saline solution, and no salt crystals appeared on the surface of the cryogel after 5 h of photothermal evaporation. Therefore, it was evidenced that the presence of sulfonate groups not only reduced the evaporation enthalpy of water but also prevented salting-out from blocking the water delivery channel during photothermal evaporation, with a sufficiently high evaporation rate, providing a reliable idea of matrix modification for the design of high-efficiency photothermal evaporation materials.

8.
Front Genet ; 13: 997581, 2022.
Article En | MEDLINE | ID: mdl-36212129

Aniridia-associated keratopathy (AAK) is characteristic at ocular surface of aniridia caused by haploinsufficiency of PAX6. Competing endogenous RNA (ceRNA) has been reported to play an important role in various diseases, whereas its function on AAK is unclear. The microarray data of 20 AAK patients and 20 healthy people were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed lncRNAs, miRNAs, and mRNAs were analyzed using "limma" packages and weighted gene co-expression network analysis (WGCNA). A ceRNA network was constructed by Cytoscape 3.9.1, and miR-224-5p, miR-30a-5p, and miR-204-5p were at the center of the network. CIBERSORTx algorithm and ssGSEA analyses revealed that AAK was associated with immune cell infiltration, showing that activated Mast cells increased while resting Mast cells decreased and NK cells decreased in AAK. Type II INF Response, CCR, parainflammation, T cell co-stimulation, and APC co-stimulation of AAK patients differed from healthy individuals. Additionally, the ROC curve of five genes, MITF(AUC = 0.988), RHOB(AUC = 0.973), JUN(AUC = 0.953), PLAUR (AUC = 0.925), and ARG2 (AUC = 0.915) with high confidence in predicting AAK were identified. Gene set enrichment analysis (GSEA) analysis of hub genes enriched in the IL-17 signaling pathway.

9.
Front Genet ; 13: 838220, 2022.
Article En | MEDLINE | ID: mdl-35692841

Glaucoma is the leading cause of irreversible blindness globally; hence, relevant clinical biomarkers are necessary to enable diagnosis, early detection, and development of novel therapies. The differentially expressed genes were annotated and visualized using Gene Ontology and Kyoto Encyclopedia. In addition, a competitive endogenous ribonucleic acids network was constructed using Cytoscape, which explained the regulation of gene expression in glaucoma. The CIBERSORT algorithm was employed to analyze the immune microenvironment. We validated that the core genes could predict glaucoma occurrence and development and identified potential molecular mechanism pathways, which were associated with immune infiltration and participated in endogenous regulation networks. Our data may partially explain the pathogenesis of glaucoma and they provide potential theoretical support for targeted therapy.

10.
Front Plant Sci ; 12: 688707, 2021.
Article En | MEDLINE | ID: mdl-34630449

IbMYB1 was one of the major anthocyanin biosynthesis regulatory genes that has been identified and utilized in purple-fleshed sweet potato breeding. At least three members of this gene, namely, IbMYB1-1, -2a, and -2b, have been reported. We found that IbMYB1-2a and -2b are not necessary for anthocyanin accumulation in a variety of cultivated species (hexaploid) with purple shoots or purplish rings/spots of flesh. Transcriptomic and quantitative reverse transcription PCR (RT-qPCR) analyses revealed that persistent and vigorous expression of IbMYB1 is essential to maintain the purple color of leaves and storage roots in this type of cultivated species, which did not contain IbMYB1-2 gene members. Compared with IbbHLH2, IbMYB1 is an early response gene of anthocyanin biosynthesis in sweet potato. It cannot exclude the possibility that other MYBs participate in this gene regulation networks. Twenty-two MYB-like genes were identified from 156 MYBs to be highly positively or negatively correlated with the anthocyanin content in leaves or flesh. Even so, the IbMYB1 was most coordinately expressed with anthocyanin biosynthesis genes. Differences in flanking and coding sequences confirm that IbMYB2s, the highest similarity genes of IbMYB1, are not the members of IbMYB1. This phenomenon indicates that there may be more members of IbMYB1 in sweet potato, and the genetic complementation of these members is involved in the regulation of anthocyanin biosynthesis. The 3' flanking sequence of IbMYB1-1 is homologous to the retrotransposon sequence of TNT1-94. Transposon movement is involved in the formation of multiple members of IbMYB1. This study provides critical insights into the expression patterns of IbMYB1, which are involved in the regulation of anthocyanin biosynthesis in the leaf and storage root. Notably, our study also emphasized the presence of a multiple member of IbMYB1 for genetic improvement.

11.
Front Pharmacol ; 12: 667959, 2021.
Article En | MEDLINE | ID: mdl-34122088

Background: Retinal photoreceptor (RP) cells are widely involved in retina-related diseases, and oxidative stress plays a critical role in retinal secondary damage. Herein, we investigated the effectiveness and potential mechanisms of autophagy of paeonol (Pae) in terms of oxidation resistance. Methods: The animal model was induced by light damage (LD) in vivo, whereas the in vitro model was established by H2O2 stimulation. The effectiveness of Pae was evaluated by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence, transmission electron microscopy, electroretinogram, and Western blot analysis in vivo, and the underlying mechanisms of Pae were assessed by Cell Counting Kit-8 assay, reactive oxygen species (ROS) assay, and Western blot analysis in 661W cells. We mainly evaluated the effects of Pae on apoptosis and autophagy. Results: Increased apoptosis of the LD-induced and decreased autophagy of RPs were mitigated by Pae treatment. Pea, which increased the expression of mitochondrial functional protein cytochrome c, reversed the decreased cell viability and autophagy induced by oxidative stress in 661W cells. Experiments showed that autophagy was downregulated in PINK1/Parkin dependent and the BNIP3L/Nix dependent pathways under H2O2 stimulation and was upregulated by Pae treatment. Pae increased the cell viability and reduced ROS levels through autophagy. Conclusion: Pretreatment with Pae preserved RP cells by enhancing autophagy, which protected retinal function.

12.
J Plant Physiol ; 254: 153262, 2020 Nov.
Article En | MEDLINE | ID: mdl-33027727

Sweetpotato (Ipomoea batatas L.) possess great application prospects due to their low cadmium (Cd) concentration within their storage roots despite growth on Cd-polluted fields. The mechanisms of low Cd accumulation in storage root is not entirely clear. We found that the blocking effect of Cd uptake in the root absorption system and the characteristics of Cd distribution in storage root play a decisive role in the regulation of low Cd accumulation in storage root. Cd absorbed from the rhizosphere mainly accumulated in feeder roots in Cd dose-dependent accumulation analyses. Meanwhile, we found that Cd absorbed by the peels of storage root was mainly transported from peels to shoots, rather than directly into the fleshed storage root. Further analysis indicated that Cd uptake, transport, and distribution in sweetpotato hinges on whether Cd enters the plant plasma membrane by either the symplast or apoplast pathway. The Cd concentration in feeder root decreased after respiratory inhibitors CCCP and DNP treatment and increased after the culture temperature was raised from 28 ℃ to 35 ℃. Non-invasive microelectrode Cd flux measurements further revealed that Cd uptake in feeder root was affected greatly by the Cd concentration of the solution and was markedly reduced by respiratory inhibitor CCCP. Relative to the elongation zone and mature zone, the meristematic zone was the main site of Cd uptake in the root absorption system. This study suggests that inhibition of Cd uptake by the root absorption system and the characteristics of Cd distribution in storage root are the main reasons for low cadmium accumulation in storage root.


Cadmium/metabolism , Ipomoea batatas/metabolism , Plant Tubers/metabolism , Biological Transport , Hydroponics , Temperature
13.
PeerJ ; 8: e9320, 2020.
Article En | MEDLINE | ID: mdl-32551204

The white-backed planthopper Sogatella furcifera is an economically important rice pest distributed throughout Asia. It damages rice crops by sucking phloem sap, resulting in stunted growth and plant virus transmission. We aimed to obtain the full-length transcriptome data of S. furcifera using PacBio single-molecule real-time (SMRT) sequencing. Total RNA extracted from S. furcifera at various developmental stages (egg, larval, and adult stages) was mixed and used to generate a full-length transcriptome for SMRT sequencing. Long non-coding RNA (lncRNA) identification, full-length coding sequence prediction, full-length non-chimeric (FLNC) read detection, simple sequence repeat (SSR) analysis, transcription factor detection, and transcript functional annotation were performed. A total of 12,514,449 subreads (15.64 Gbp, clean reads) were generated, including 630,447 circular consensus sequences and 388,348 FLNC reads. Transcript cluster analysis of the FLNC reads revealed 251,109 consensus reads including 29,700 high-quality reads. Additionally, 100,360 SSRs and 121,395 coding sequences were identified using SSR analysis and ANGEL software, respectively. Furthermore, 44,324 lncRNAs were annotated using four tools and 1,288 transcription factors were identified. In total, 95,495 transcripts were functionally annotated based on searches of seven different databases. To the best of our knowledge, this is the first study of the full-length transcriptome of the white-backed planthopper obtained using SMRT sequencing. The acquired transcriptome data can facilitate further studies on the ecological and viral-host interactions of this agricultural pest.

14.
PLoS One ; 15(3): e0230435, 2020.
Article En | MEDLINE | ID: mdl-32191747

Harmonia axyridis is a major bio-control agent of pests in agriculture and forest ecosystems. It is also a globally important invasive insect species. To test whether dark elytra colour is associated with greater cold hardiness, we compared the survival rate of prolonged cold exposure in both yellow and black colour morphs of female and male H. axyridis. We determined the trehalose and glycogen content, trehalase activity, and the dynamics of genes associated with the trehalose metabolic pathway. Yellow forms predominated before winter began, however black forms increased from 11.15 to 30.46% after overwintering. There was no significant difference in trehalose content between the females and males during overwintering. Glycogen content in over-wintering yellow females and black males increased significantly, while it decreased in black females. Soluble trehalase activity increased significantly in all the insects except black females. Membrane-bound trehalase activity increased in black males, and decreased in black females. Trehalose and glycogen content and trehalase activity were regulated by differential expression of TRE and TPS genes. Female beetles weighed more than males and survived in low temperatures for longer periods of time, regardless of elytra colour, suggesting that mass is a stronger predictor of overwintering survival rather than colour morph. Our results provide a guide for comparing cold resistance in insects and a theoretical basis for cold storage of H. axyridis for use as natural enemies of pests in biological control programs.


Cold Temperature , Coleoptera/anatomy & histology , Coleoptera/metabolism , Seasons , Trehalose/metabolism , Animals , Body Weight , Coleoptera/genetics , Female , Gene Expression Regulation , Genes, Insect , Glycogen/metabolism , Male , Phenotype , Survival Analysis , Time Factors , Trehalase/metabolism
15.
Article En | MEDLINE | ID: mdl-31927198

Nilaparvata lugens is a serious threat to rice growth. Glycogen metabolism is one of the important physiological processes of insects, which is mainly regulated by glycogen synthase (GS) and glycogen phosphorylase (GP). In the present study, trehalose content was significantly reduced at 72 h after NlGP and NlGS knockdown, whereas glucose content was significantly increased at both 48 h and 72 h after GS knockdown. RNAi combined with RNA-Seq was used to identify NlGP- and NlGS-related pathways and genes in N. lugens. A total of 593 genes were up-regulated and 5969 genes were down-regulated after NlGP and NlGS knockdown, respectively. Moreover, the NlGS-knockdown group was mapped to 10,967 pathways, whereas the NlGP-knockdown group was mapped to 7948 pathways, and the greatest differences between the groups were associated with carbohydrate, lipid, amino acid and energy metabolism. Meanwhile, 1800, 1217, and 1211 transcripts in the NlGP-knockdown group and 2511, 1666, and 1727 transcripts in the NlGS-knockdown group were involved in bioprocess, cellular ingredients and molecular function, respectively. Almost all these genes were down-regulated by either NlGP or NlGS knockdown, with significant down-regulation of the 6-trehalose phosphate synthase (TPS), trehalase (TRE), GS, GP, phosphoacetylglucosamine mutase (PGM, n = 2), Insulin receptors (InRs) and insulin-like peptides (Ilps) genes. These results have demonstrated that RNAi-mediated NlGP and NlGS knockdown could lead to content of trehalose and glucose out of balance, but have no obvious effect on glycogen content, and have suggested that GS plays more complex role in other metabolism pathway of N. lugens.


Glycogen Phosphorylase/genetics , Glycogen Synthase/genetics , Glycogen/genetics , Hemiptera/genetics , Insect Proteins/genetics , Insulin/genetics , Animals , Gene Expression Regulation , Gene Knockdown Techniques , Genes, Insect , Oryza/parasitology
16.
Front Physiol ; 10: 163, 2019.
Article En | MEDLINE | ID: mdl-30890949

Intermittent food shortages are commonly encountered in the wild. During winter or starvation stress, mammals often choose to hibernate while insects-in the form of eggs, mature larvae, pupae, or adults opt to enter diapause. In response to food shortages, insects may try to find sufficient food to maintain normal growth and metabolism through distribution of populations or even migration. In the face of hunger or starvation, insect responses can include changes in behavior and/or maintenance of a low metabolic rate through physiological adaptations or regulation. For instance, in order to maintain homeostasis of the blood sugar, trehalose under starvation stress, other sugars can be transformed to sustain basic energy metabolism. Furthermore, as the severity of starvation increases, lipids (especially triglycerides) are broken down to improve hunger resistance. Starvation stress simultaneously initiates a series of neural signals and hormone regulation processes in insects. These processes involve neurons or neuropeptides, immunity-related genes, levels of autophagy, heat shock proteins and juvenile hormone levels which maintain lower levels of physiological metabolic activity. This work focuses on hunger stress in insects and reviews its effects on behavior, energy reserve utilization, and physiological regulation. In summary, we highlight the diversity in adaptive strategies of insects to hunger stress and provides potential ideas to improve hunger resistance and cold storage development of natural enemy insects. This gist of literature on insects also broadens our understanding of the factors that dictate phenotypic plasticity in adjusting development and life histories around nutritionally optimal environmental conditions.

17.
Front Physiol ; 9: 1411, 2018.
Article En | MEDLINE | ID: mdl-30349487

Akirin is an essential nuclear protein involved in the regulation of NF-κB signaling pathway. In most invertebrates, Akirin regulates NF-κB-related Imd and Toll pathways, however, in Drosophila, it only controls the Imd pathway, whereas its role in NF-κB signaling pathway in other insect species is unclear. In the present study, we used white-backed planthopper Sogatella furcifera as a model to investigate the functional activity of Akirin in insects. The sequence of Akirin cDNA was extracted from transcriptome database of S. furcifera; it contained a 585 bp open reading frame (ORF) encoding a putative protein of 194 amino acids. S. furcifera Akirin (SfAkirin) had a molecular weight of about 21.69 kDa and a theoretical pI of 8.66 and included a nuclear localization signal (NLS) of five amino acid residues at the N-terminal region. Evolutionary analysis showed that SfAkirin was evolutionary closer to Akirins of such relatively distant species as crustaceans than to those of some insect orders like Diptera and Hymenoptera. Tissue-specific expression analysis showed that the SfAkirin gene was expressed in all examined tissues, with the highest expression levels detected in the testis, followed by the ovary, whereas the lowest expression was found in the head. Real-time quantitative PCR analysis showed that SfAkirin mRNA was strongly induced in response to injection of heat-inactivated Escherichia coli and Bacillus subtilis, whereas SfAkirin silencing by RNA interference significantly reduced the expression of NF-κB dependent transcription factors Dorsal and Relish after B. subtilis and E. coli challenge, respectively. Our results suggest that SfAkirin may control the immune response of S. furcifera against bacterial infection via both Imd and Toll signaling pathways.

18.
Plant Physiol ; 173(4): 2294-2307, 2017 04.
Article En | MEDLINE | ID: mdl-28250067

Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.


Arabidopsis Proteins/metabolism , Metalloproteases/metabolism , Mitochondrial Proteins/metabolism , Plant Leaves/metabolism , Salicylic Acid/metabolism , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Autophagy/genetics , Autophagy-Related Protein 5 , Autophagy-Related Protein 8 Family , Cell Death/genetics , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Metalloproteases/genetics , Microscopy, Confocal , Mitochondrial Proteins/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation , Plant Leaves/genetics , Plant Leaves/physiology , Promoter Regions, Genetic/genetics , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factors/genetics
19.
Yi Chuan ; 38(9): 811-20, 2016 09.
Article En | MEDLINE | ID: mdl-27644742

With the development and improvement of CRISPR/Cas9 system in genomic editing technology, the system has been applied to the prevention and control of animal viral infectious diseases, which has made considerable achievements. It has also been applied to the study of highly efficient gene targeting editing in plant virus genomes. The CRISPR/Cas9-mediated targeted gene modification has not only achieved the genome editing of plant DNA virus, but also showed the genome editing potential of plant RNA virus. In addition, the CRISPR/Cas9 system functions at the gene transcriptional and post-transcriptional level, indicating that the system could regulate the replication of plant viruses through different ways. Compared with other plant viral disease control strategies, this system is more accurate in genome editing, more stable in gene expression regulation, and has broader spectrum of resistance to virus disease. In this review, we summarized the advantages, main problems and development tendency of CRISPR/cas9 system in breeding of new antiviral plant germplasms.


CRISPR-Cas Systems/genetics , Plant Diseases/genetics , Plants/genetics , Plants/virology , Virus Diseases/genetics , Breeding/methods , DNA, Plant/genetics , Gene Editing/methods , Plant Diseases/virology , Plant Viruses/genetics , Virus Diseases/virology
20.
Zootaxa ; 3946(1): 149, 2015 Apr 08.
Article En | MEDLINE | ID: mdl-25947681

The braconid genus Napo was established by Shaw (2012) for a single species Napo townsendi Shaw, 2012 from Napo Province, Ecuador. However, the genus name Napo is preoccupied and was initially introduced by Linnavuori & DeLong (1976) for a deltocephalinae leafhopper genus with Napo brazosellus Linnavuori & DeLong, 1976 as the type species (Hemiptera: Cicadellidae). Thus, the genus Napo Shaw, 2012 is a junior homonym of the genus Napo Linnavuori & DeLong, 1976. According to Article 60 of the ICZN (2015), we propose the new replacement name Yanayacu nom. nov. for Napo Shaw, 2012. The resulting nomenclatural changes are summarized below.


Terminology as Topic , Wasps , Animals , Ecuador
...