Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.595
Filter
1.
Article in English | MEDLINE | ID: mdl-39115898

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure (BP). We administered hydroxylamine hydrochloride (HA), a cystathionine-ß-synthase (CBS) inhibitor, into the PVN to suppress endogenous hydrogen sulfide (H2S) and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the NS+PVN vehicle group, the NS+PVN HA group, the HS+PVN vehicle group, and the HS+PVN HA group, with 10 rats in each group. The rats in the NS (normal salt) groups were fed a normal-salt diet containing 0.3% NaCl, while the HS (high salt) groups were fed a high-salt diet containing 8% NaCl. The mean arterial pressure (MAP) was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini-pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H2S in the PVN and plasma norepinephrine (NE) using ELISA. Additionally, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time PCR. In the current study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of high salt-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.

2.
World J Clin Cases ; 12(22): 5131-5139, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39109012

ABSTRACT

BACKGROUND: Sotos syndrome is an autosomal dominant disorder, whereas attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition. This report aimed to summarize the clinical and genetic features of a pediatric case of Soros syndrome and ADHD in a child exhibiting precocious puberty. CASE SUMMARY: The patient presented with accelerated growth and advanced skeletal maturation; however, she lacked any distinct facial characteristics related to specific genetic disorders. Genetic analyses revealed a paternally inherited heterozygous synonymous mutation [c.4605C>T (p.Arg1535Arg)]. Functional analyses suggested that this mutation may disrupt splicing, and bioinformatics analyses predicted that this mutation was likely pathogenic. After an initial diagnosis of Sotos syndrome, the patient was diagnosed with ADHD during the follow-up period at the age of 8 years and 7 months. CONCLUSION: The potential for comorbid ADHD in Sotos syndrome patients should be considered to avoid the risk of a missed diagnosis.

3.
Sci Rep ; 14(1): 18454, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117672

ABSTRACT

Mental fatigue during long-term motor imagery (MI) may affect intention recognition in MI applications. However, the current research lacks the monitoring of mental fatigue during MI and the definition of robust biomarkers. The present study aims to reveal the effects of mental fatigue on motor imagery recognition at the brain region level and explore biomarkers of mental fatigue. To achieve this, we recruited 10 healthy participants and asked them to complete a long-term motor imagery task involving both right- and left-handed movements. During the experiment, we recorded 32-channel EEG data and carried out a fatigue questionnaire for each participant. As a result, we found that mental fatigue significantly decreased the subjects' motor imagery recognition rate during MI. Additionally the theta power of frontal, central, parietal, and occipital clusters significantly increased after the presence of mental fatigue. Furthermore, the phase synchronization between the central cluster and the frontal and occipital lobes was significantly weakened. To summarize, the theta bands of frontal, central, and parieto-occipital clusters may serve as powerful biomarkers for monitoring mental fatigue during motor imagery. Additionally, changes in functional connectivity between the central cluster and the prefrontal and occipital lobes during motor imagery could be investigated as potential biomarkers.


Subject(s)
Electroencephalography , Imagination , Mental Fatigue , Humans , Mental Fatigue/physiopathology , Male , Pilot Projects , Female , Imagination/physiology , Adult , Young Adult , Brain/physiology , Movement/physiology
4.
Bioact Mater ; 41: 174-192, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39131629

ABSTRACT

Hemostatic materials are essential for managing acute bleeding in medical settings. Chitosan (CS) shows promise in hemostasis but its underlying mechanism remains incompletely understood. We unexpectedly discovered that certain protonated-chitosan (PCS) rapidly assembled plasma proteins to form protein membrane (PM) upon contact with platelet-poor plasma (PPP). We hypothesized that the novel observation was intricately related to the procoagulant effect of chitosan. Herein, the study aimed to elucidate the conditions necessary and mechanism for PM formation, identify the proteins within the PM and PCS's procoagulant action at the molecule levels. We confirmed that the amount of -NH3 + groups (>4.9 mmol/g) on PCS molecules played a crucial role in promoting coagulation. The -NH3 + group interacted with blood's multiple active components to exert hemostatic effects: assembling plasma proteins including coagulation factors such as FII, FV, FX, activating blood cells and promoting the secretion of coagulation-related substances (FV, ADP, etc) by platelets. Notably, the hemostatic mechanism can be extended to protonated-chitosan derivatives like quaternized, alkylated, and catechol-chitosan. In the blood clotting index (BCI) experiment, compared to other groups, PCS95 achieved the lowest BCI value (∼6 %) within 30 s. Protonated-chitosan exhibited excellent biocompatibility and antibacterial properties, with PCS95 demonstrating inhibition effectiveness of over 95 % against Escherichia coli (E.coil) and Staphylococcus aureus (S. aureus). Moreover, PCS performed enhanced hemostatic effectiveness over chitosan-based commercially agents (Celox™ and ChitoGauze®XR) in diverse bleeding models. In particular, PCS95 reduced bleeding time by 70 % in rabbit models of coagulopathy. Overall, this study investigated the coagulation mechanism of materials at the molecular level, paving the way for innovative approaches in designing new hemostatic materials.

5.
Front Cardiovasc Med ; 11: 1401586, 2024.
Article in English | MEDLINE | ID: mdl-39131705

ABSTRACT

Background: This study aimed to investigate alterations in serum markers [creatine kinase-MB (CKMB), cardiac troponin T (cTnT), myoglobin (Myo), B-type natriuretic peptide (BNP), D-dimer (DD), procalcitonin (PCT) and interleukin-6 (IL6)] in early Omicron variant infection and analyzed their correlation with clinical parameters. Methods: Retrospective analysis of 1,138 mild/asymptomatic cases at Tianjin First Central Hospital, including age, gender, serum markers and nucleic acid test results. Statistical analysis used SPSS software, version 24.0. Results: Elevated cTnT, BNP (125-400), and DD (0.55-1.10) levels were prevalent at 12.92%, 15.64%, and 14.50%, respectively. Females had significantly higher proportions with slightly elevated BNP (19.34%) and DD (19.69%) levels. Patients over 35 had a higher proportion of slight elevation in BNP (20.00%). Abnormal levels of serum markers were significantly associated with older age, increased PCT and IL6 levels, as well as delayed nucleic acid clearance. Additionally, levels of immunoglobulin G (IgG) were notably reduced in these cases. Patients with prolonged nucleic acid clearance (>14 days) had higher BNP and DD levels upon admission. Logistic regression identified PCT (OR = 237.95) as the most significant risk factor for abnormal serum markers for cardiovascular system injury. Conclusion: Early Omicron infection might do subclinical damage to the cardiovascular system. Elevated cTnT, BNP and DD levels were correlated with age, gender, inflammatory factors, and IgG. Notably, high PCT level emerged as the most robust predictor of abnormal serum biomarkers.

6.
J Med Chem ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137258

ABSTRACT

Cisplatin is a widely used drug for the clinical treatment of tumors. However, nephrotoxicity limits its widespread use. A series of compounds including eight analogs (G3-G10) and 40 simplifiers (G11-G50) were synthesized based on the total synthesis of Psiguamer A and B, which were novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Among these compounds, (d)-G8 showed the strongest protective effect on cisplatin-induced acute kidney injury (AKI) in vitro and vivo, and slightly enhanced the antitumor efficacy of cisplatin. A mechanistic study showed that (d)-G8 promoted the efflux of cisplatin via upregulating the copper transporting efflux proteins ATP7A and ATP7B. It enhanced autophagy through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. (d)-G8 showed no acute toxicity or apparent pathological damage in the healthy mice at a single dose of 1 g/kg. This study provides a promising lead against cisplatin-induced AKI.

7.
Mol Neurobiol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134827

ABSTRACT

Moyamoya disease (MMD) is a rare, chronic, and progressive cerebrovascular disorder with unclear underlying causes and mechanisms. Previous studies suggest a potential involvement of endothelial-mesenchymal transition (EndMT) in the pathogenesis of MMD. This study aimed to explore the contribution of EndMT-related genes (ERGs) in MMD. Two datasets, GSE141022 and GSE157628, were integrated as the training set after batch effects removal. Differentially expressed ERGs were identified between MMD and control groups. Functional enrichment analysis and immune infiltration analysis were further performed. LASSO regression was used for hub MMD-related ERG selection. Consensus clustering was used for MMD subtype classification based on these hub MMD-related ERGs. Molecular characteristics between MMD subtypes were analyzed using WGCNA. PPI network was used to illuminate the genetic relationship. The hub MMD-related ERGs were validated in an independent testing set, GSE189993. The nomogram model was constructed and evaluated using ROC curves and calibration plots. Additionally, CCK-8, EdU, wound healing, and western blot were performed to confirm the function of the hub MMD-related ERGs. A total of 107 DE-ERGs were identified. Functional enrichment analysis showed these genes were associated with EndMT and immune response. The infiltrating levels of immune cells were commonly higher in the MMD group. LASSO regression identified 12 hub MMD-related ERGs, leading to the identification of two MMD subtypes. Four ERGs emerged as the final hub MMD-related ERGs after validation in the testing set, including CCL21, CEBPA, KRT18, and TNFRSF11A. The nomogram model exhibited excellent discrimination ability. In vitro experiments showed that CCL21, CEBPA, KRT18, and TNFRSF11A could promote proliferation, migration, and EndMT. This study investigated the potential role of EndMT in MMD and identified four hub MMD-related ERGs, providing potential therapeutic targets for MMD treatment.

8.
Article in English | MEDLINE | ID: mdl-39136271

ABSTRACT

The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.

9.
J Am Heart Assoc ; : e033929, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119974

ABSTRACT

BACKGROUND: Few large-scale studies have evaluated the effectiveness of percutaneous coronary intervention (PCI) technological advances in the treatment of patients with unprotected left main coronary artery disease (LM-CAD). We aim to identify independent factors that affect the prognosis of PCI in patients with unprotected LM-CAD and to assess the impact of PCI technological advances on long-term clinical outcomes. METHODS AND RESULTS: A total of 4512 consecutive patients who underwent unprotected LM-CAD PCI at Fuwai Hospital from 2004 to 2016 were enrolled. Multivariable Cox proportional hazards model was used to identify which techniques can independently affect the incidence of major adverse cardiac events (MACEs; a composite of cardiac death, myocardial infarction, or target vessel revascularization). The incidence of 3-year MACEs was 9.0% (406/4512). Four new PCI techniques were identified as the independent protective factors of MACEs, including second-generation drug-eluting stents (hazard ratio [HR], 0.61 [95% CI, 0.37-0.99]), postdilatation (HR, 0.75 [95% CI, 0.59-0.94]), final kissing balloon inflation (HR, 0.78 [95% CI, 0.62-0.99]), and using intravascular ultrasound (HR, 0.78 [95% CI, 0.63-0.97]). The relative hazard of 3-year MACEs was reduced by ≈50% with use of all 4 techniques compared with no technique use (HR, 0.53 [95% CI, 0.32-0.87]). CONCLUSIONS: PCI technological advances including postdilatation, second-generation drug-eluting stent, final kissing balloon inflation, and intravascular ultrasound guidance were associated with improved clinical outcomes in patients who underwent unprotected LM-CAD PCI.

10.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118129

ABSTRACT

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Subject(s)
Reperfusion Injury , Sodium-Hydrogen Exchanger 1 , Humans , Animals , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/genetics , Phosphorylation , Hydrogen-Ion Concentration , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Male , Ischemic Preconditioning , Cell Line , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Acids/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism
11.
EClinicalMedicine ; 74: 102736, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091669

ABSTRACT

Background: Masked hypertension is associated with target organ damage (TOD) and adverse health outcomes, but whether antihypertensive treatment improves TOD in patients with masked hypertension is unproven. Methods: In this multicentre, randomised, double-blind, placebo-controlled trial at 15 Chinese hospitals, untreated outpatients aged 30-70 years with an office blood pressure (BP) of <140/<90 mm Hg and 24-h, daytime or nighttime ambulatory BP of ≥130/≥80, ≥135/≥85, or ≥120/≥70 mm Hg were enrolled. Patients had ≥1 sign of TOD: electrocardiographic left ventricular hypertrophy (LVH), brachial-ankle pulse wave velocity (baPWV) ≥1400 cm/s, or urinary albumin-to-creatinine ratio (ACR) ≥3.5 mg/mmol in women and ≥2.5 mg/mmol in men. Exclusion criteria included secondary hypertension, diabetic nephropathy, serum creatinine ≥176.8 µmol/L, and cardiovascular disease within 6 months of screening. After stratification for centre, sex and the presence of nighttime hypertension, eligible patients were randomly assigned (1:1) to receive antihypertensive treatment or placebo. Patients and investigators were masked to group assignment. Active treatment consisted of allisartan starting at 80 mg/day, to be increased to 160 mg/day at month 2, and to be combined with amlodipine 2.5 mg/day at month 4, if the ambulatory BP remained uncontrolled. Matching placebos were used likewise in the control group. The primary endpoint was the improvement of TOD, defined as normalisation of baPWV, ACR or LVH or a ≥20% reduction in baPWV or ACR over the 48-week follow-up. The intention-to-treat analysis included all randomised patients, the per-protocol analysis patients who fully adhered to the protocol, and the safety analysis all patients who received at least one dose of the study medication. This study is registered with ClinicalTrials.gov, NCT02893358. Findings: Between February 14, 2017, and October 31, 2020, 320 patients (43.1% women; mean age ± SD 53.7 ± 9.7 years) were enrolled. Baseline office and 24-h BP averaged 130 ± 6.0/81 ± 5.9 mm Hg and 136 ± 8.6/84 ± 6.1 mm Hg, and the prevalence of elevated baPWV, ACR and LVH were 97.5%, 12.5%, and 7.8%, respectively. The 24-h BP decreased on average (±SE) by 10.1 ± 0.9/6.4 ± 0.5 mm Hg in 153 patients on active treatment and by 1.3 ± 0.9/1.0 ± 0.5 mm Hg in 167 patients on placebo. Improvement of TOD occurred in 79 patients randomised to active treatment and in 49 patients on placebo: 51.6% (95% CI 43.7%, 59.5%) versus 29.3% (22.1, 36.5%; p < 0.0001). Per-protocol and subgroup analyses were confirmatory. Adverse events were generally mild and occurred in 38 (25.3%) and 43 (26.4%) patients randomised to active treatment and placebo, respectively (p = 0.83). Interpretation: Our results suggest that antihypertensive treatment improves TOD in patients with masked hypertension, highlighting the need of treatment. However, the long-term benefit in preventing cardiovascular complications still needs to be established. Funding: Salubris China.

12.
Front Nutr ; 11: 1359409, 2024.
Article in English | MEDLINE | ID: mdl-39091682

ABSTRACT

Objective: To evaluate and explore the feasibility of using quality control indicators for nutritional therapy in critically ill patients as quality evaluation criteria. Methods: This study focused on intensive care unit (ICU) critically ill patients and conducted a cross-sectional investigation of nutritional therapy quality control indicators (the proportion of patients with application of enteral nutrition pump, nutritional risk assessment rate, the proportion of patients start enteral nutrition within 48 hours, and caloric and protein target achievement rate on 7th day) in 13 hospitals in Jilin Province. After training according to the critical patients nutrition related guidelines and the latest literatures, a second cross-sectional investigation was conducted. Then, analyze the improvement of quality control indicators of the nutritional therapy before and after the training, thus evaluating the feasibility of using these quality control indicators as nutritional therapy quality evaluation criteria in critical patients. Results: (1) A total of 631 patients were included before and after training, with a data acquisition rate of 97.3% for enteral nutrition pumps usage and complete data collection for the remaining nutritional risk assessment rate, start enteral nutrition proportion of patients within 48 h, and caloric and protein target achievement rate on 7th day. (2) The nutritional risk assessment rate before and after training was 88.2% vs. 94.8%, with a P-value of 0.003. The proportion of patients start enteral nutrition within 48 h before and after training was 65.1% vs. 75.4%, with a P-value of 0.039; and protein target achievement rate on 7th day before and after training was 64.6% vs. 79.6%, with a p-value of 0.015. These five indicators as quality evaluation criteria are relevant to the current developments in nutritional therapy and consistent with the national conditions of China. The proportion of patients with application of enteral nutrition pump before and after training was 70.1% vs. 79.4%, with a p-value of 0.065, and the caloric target achievement rate on 7th day before and after training was 73.4% vs. 83.9%, with a p-value of 0.062, and there was no statistical difference between the two groups. Conclusion: The five quality control indicators for nutritional therapy in critically ill patients are clinically feasible and can be used as quality evaluation criteria for nutritional therapy in critically ill patients.

13.
Heredity (Edinb) ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095653

ABSTRACT

Studies of forces driving interlineage variability in the evolutionary rates (both sequence and architecture) of mitochondrial genomes often produce contradictory results. Flatworms (Platyhelminthes) exhibit the fastest-evolving mitogenomic sequences among all bilaterian phyla. To test the effects of multiple factors previously associated with different aspects of mitogenomic evolution, we used mitogenomes of 223 flatworm species, phylogenetic multilevel regression models, and causal inference. Thermic host environment (endothermic vs. ectothermic) had nonsignificant impacts on both sequence evolution and mitogenomic size. Mitogenomic gene order rearrangements (GORR) were mostly positively correlated with mitogenomic size (R2 ≈ 20-30%). Longevity was not (negatively) correlated with sequence evolution in flatworms. The predominantly free-living "turbellaria" exhibited much shorter branches and faster-evolving mitogenomic architecture than parasitic Neodermata. As a result, "parasitism" had a strong explanatory power on the branch length variability (>90%), and there was a negative correlation between GORR and branch length. However, the stem branch of Neodermata comprised 63.6% of the total average branch length. This evolutionary period was also marked by a high rate of gene order rearrangements in the ancestral Neodermata. We discuss how this period of rapid evolution deep in the evolutionary history may have decoupled sequence evolution rates from longevity and GORR, and overestimated the explanatory power of "parasitism". This study shows that impacts of variables often vary across lineages, and stresses the importance accounting for the episodic nature of evolutionary patterns in studies of mitogenomic evolution.

14.
Biomed Pharmacother ; 178: 117237, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096616

ABSTRACT

The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.

15.
Nat Commun ; 15(1): 5682, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971854

ABSTRACT

Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria's ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.


Subject(s)
Methane , Photosynthesis , Synechocystis , Methane/metabolism , Synechocystis/metabolism , Oxidation-Reduction , Methanosarcina barkeri/metabolism , Oxygen/metabolism , Biofilms/growth & development , Anaerobiosis , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Light , Archaea/metabolism , Archaea/genetics
16.
iScience ; 27(6): 110119, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38974473

ABSTRACT

Under the background of the accelerating speed of urban and rural construction, the geographical environment of overhead transmission lines has also changed greatly. Using unmanned aerial vehicle (UAV) to realize intelligent line inspection can significantly shorten inspection time and improve inspection efficiency. In this paper, the intelligent power inspection of UAVs is studied from two levels: path planning and UAV control, and the insulator is identified through actual image recognition. At the path planning level, the improved swarm intelligence algorithm is used to conduct simulation experiments on the UAV flight path to find a safe and effective route. Insulator identification and defect location of overhead transmission lines are trained on the insulator dataset collected by deep learning technology to achieve accurate insulator identification and improve the efficiency of UAV inspection, which has great application prospects in engineering.

18.
Clin Exp Immunol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990891

ABSTRACT

Growing evidence suggests that systemic immune and inflammatory responses may play a critical role in the formation and development of aneurysms. Exploring the differences between single intracranial aneurysm (SIA) and multiple IAs (MIAs) could provide insights for targeted therapies. However, there is a lack of comprehensive and detailed characterization of changes in circulating immune cells in MIAs. Peripheral blood mononuclear cell (PBMC) samples from patients with SIA (n = 16) or MIAs (n = 6) were analyzed using high-dimensional mass cytometry to evaluate the frequency and phenotype of immune cell subtypes. A total of 25 cell clusters were identified, revealing that the immune signature of MIAs included cluster changes. Compared to patients with SIA, patients with MIAs exhibited immune dysfunction and regulatory imbalance in T-cell clusters. They also had reduced numbers of CD8+ T cells and their subgroups CD8+ Te and CD8+ Tem cells, as well as reduced numbers of the CD4+ T-cell subgroup CD27-CD4+ Tem cells. Furthermore, compared to SIA, MIAs were associated with enhanced T-cell immune activation, with elevated expression levels of CD3, CD25, CD27, CCR7, GP130, and interleukin 10. This study provides insights into the circulating immune cell profiles in patients with MIAs, highlighting the similarities and differences between patients with SIA and those with MIAs. Furthermore, the study suggests that circulating immune dysfunction may contribute to development of MIAs.

19.
Article in English | MEDLINE | ID: mdl-38990083

ABSTRACT

Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein-protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.

20.
Antonie Van Leeuwenhoek ; 117(1): 98, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981868

ABSTRACT

An aerobic, Gram-stain-negative bacterium, designated as SYSU D00382T, was sourced from soil of Gurbantunggut Desert, PR China. The strain was short-rod-shaped, oxidase-positive and catalase-negative, with yellow-colored, convex, round, and smooth colonies on TSA plate. Growth and proliferation occurred at 4-37 °C (optimal: 28-30 °C), pH 5.0-8.0 (optimal: pH 6.0-7.0) and NaCl concentration of 0-2.5% (optimal: 0-0.5%). The 16S rRNA gene based phylogenetic assessment showed that SYSU D00382T belonged to the genus Pedobacter, and was most closely related to Pedobacter ginsengisoli Gsoil 104T with similarity of 97.7%. The genomic DNA G+C content of SYSU D00382T was 46.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00382T and P. ginsengisoli Gsoil 104T were 75.7% and 17.5%, respectively. The main polar lipid was phosphatidylethanolamine. The major fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, summed features 3 and 9. The sole respiratory quinone identified was MK-7. The phylogeny based on 16S rRNA gene and whole-genome sequences revealed that SYSU D00382T formed a robust lineage with P. ginsengisoli Gsoil 104T. Based on phenotypic, phylogenetic and genotypic data, a novel specie named Pedobacter deserti sp. nov. is proposed. The type strain is SYSU D00382T (= CGMCC 1.18627T = MCCC 1K04972T = KCTC 82279T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Desert Climate , Fatty Acids , Pedobacter , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , Pedobacter/genetics , Pedobacter/classification , Pedobacter/isolation & purification , Pedobacter/physiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , China , Nucleic Acid Hybridization , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL