Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Angew Chem Int Ed Engl ; : e202414287, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373554

ABSTRACT

Directly converting CO2 in flue gas using artificial photosynthetic technology represents a promising green approach for CO2 resource utilization. However, it remains a great challenge to achieve efficient reduction of CO2 from flue gas due to the decreased activity of photocatalysts in diluted CO2 atmosphere. Herein, we designed and synthesized a series of dual metallosalen-based covalent organic frameworks (MM-Salen-COFs, M: Zn, Ni, Cu) for artificial photosynthetic diluted CO2 reduction and confirmed their advantage in comparison to that of single metal M-Salen-COFs. As a results, the ZnZn-Salen-COF with dual Zn sites exhibits a prominent visible-light-driven CO2-to-CO conversion rate of 150.9 µmol g-1 h-1 under pure CO2 atmosphere, which is ~6 times higher than that of single metal Zn-Salen-COF. Notably, the dual metal ZnZn-Salen-COF still displays efficient CO2 conversion activity of 102.1 µmol g-1 h-1 under diluted CO2 atmosphere from simulated flue gas conditions (15% CO2), which is a record high activity among COFs- and MOFs-based photocatalysts under the same reaction conditions. Further investigations and theoretical calculations suggest that the synergistic effect between the neighboring dual metal sites in the ZnZn-Salen-COF facilitates low concentration CO2 adsorption and activation, thereby lowering the energy barrier of the rate-determining step.

2.
Nat Commun ; 15(1): 8818, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394216

ABSTRACT

Rational design of robust photocatalytic systems to direct capture and in-situ convert diluted CO2 from flue gas is a promising but challenging way to achieve carbon neutrality. Here, we report a new type of host-guest photocatalysts by integrating CO2-enriching ionic liquids and photoactive metal-organic frameworks PCN-250-Fe2M (M = Fe, Co, Ni, Zn, Mn) for artificial photosynthetic diluted CO2 reduction in gas-solid phase. As a result, [Emim]BF4(39.3 wt%)@PCN-250-Fe2Co exhibits a record high CO2-to-CO reduction rate of 313.34 µmol g-1 h-1 under pure CO2 atmosphere and 153.42 µmol g-1 h-1 under diluted CO2 (15%) with about 100% selectivity. In scaled-up experiments with 1.0 g catalyst and natural sunlight irradiation, the concentration of pure and diluted CO2 (15%) could be significantly decreased to below 85% and 10%, respectively, indicating its industrial application potential. Further experiments and theoretical calculations reveal that ionic liquids not only benefit CO2 enrichment, but also form synergistic effect with Co2+ sites in PCN-250-Fe2Co, resulting in a significant reduction in Gibbs energy barrier during the rate-determining step of CO2-to-CO conversion.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125181, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39332182

ABSTRACT

An efficient Surface-enhanced Raman scattering (SERS) method for the detection of cysteamine hydrochloride (CSH) was developed by synthesizing a composite substrate comprising silver nanoparticles (AgNPs) functionalized with MoS2 and ß-cyclodextrin (ß-CD). The enhanced Raman signals of CSH by ß-CD/MoS2/AgNPs substrate were the contribution of electromagnetic enhancement (EM) as well as chemical enhancement (CM), and the enhancement factor (EF) can reach up to 3.11 × 106 (peak at 633 cm-1). Various instrumental techniques were used to characterize the substrate, such as X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and ultraviolet visible (UV-vis). The binding of ß-CD/MoS2/AgNPs and CSH was confirmed by UV-vis and Fourier transform infrared (FT-IR). The optimal experimental conditions were determined by single factor experiments as well as response surface model. The influences of different metal ions and analogous drugs on the detection of CSH were investigated. Under optimum conditions, a good linear correlation (R = 0.9997) was established for CSH in the range of 10.00-1000.00 nmol/L, and the limit of detection (LOD) was as low as 0.78 nmol/L (S/N = 3). The contents of CSH in meat samples were detected. The recovery was 96.6-103.1 %, and the relative standard deviation (RSD) of the measurement was 0.7-3.9 % (n = 7).

4.
Foods ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998629

ABSTRACT

By employing headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), this study displayed the compositional changes in volatile organic compounds (VOCs) in Tricholoma matsutake samples subjected to hot-air drying (HAD) and vacuum freeze-drying (VFD) processes from their fresh samples. A total of 99 VOCs were detected, including 2 acids, 10 aldehydes, 10 alcohols, 13 esters, 12 ketones, 24 alkanes, 14 olefins, 7 aromatic hydrocarbons, and 7 heterocyclic compounds. Notably, the drying process led to a decrease in most alcohols and aldehydes, but an increase in esters, ketones, acids, alkanes, olefins, aromatic, and heterocyclic compounds. Venn diagram (Venn), principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) analyses enabled an easy and rapid distinction between the VOC profiles of T. matsutake subjected to different drying methods. Among the identified VOCs, 30 were designated as marker VOCs indicative of the employed drying process. And the VFD method was more capable of preserving the VOCs of fresh T. matsutake samples than the HAD method. Benzaldehyde, 1-Octen-3-ol, 3-Octanol, and (E)-2-Octen-1-ol were identified as markers for FRESH T. matsutake. Conversely, (E)-3-Hexene, lavender lactone, and α-Pinene were associated with VFD T. matsutake. For HAD T. matsutake, olefins, pyrazine, and esters, particularly ocimene, 2,5-Dimethyl-pyrazine, and methyl cinnamate, significantly contributed to its particularities. The results from this present study can provide a practical guidance for the quality and flavor control of volatile organic compounds in preciously fungal fruiting bodies by using drying processes.

5.
Talanta ; 278: 126524, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38986308

ABSTRACT

The high efficient surface-enhanced Raman scatterring (SERS) methods to detect thiacloprid and imidacloprid were established using ZIF-8-wrapped Ag nanoparticles (AgNPs) modified with ß-cyclodextrin (ß-CD). The substrate of ZIF-8/ß-CD@AgNPs was characterized by ultraviolet visible spectra (UV-vis), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The interaction between the substrate and thiacloprid/imidacloprid was also explored. The optimum measurement conditions were obtained by response surface model based on single-factor experiments. Enhancement factors (EFs) of thiacloprid and imidacloprid were respectively 2.29 × 106 and 2.60 × 106. A good linearity between the scattering intensity and the concentration of thiacloprid/imidacloprid within 3-1000 nmol L-1/6-400 nmol L-1 was established. The interference experiments indicated that the methods had good selectivity. The SERS methods were successfully applied to detect thiacloprid and imidacloprid in several vegetables samples. The recoveries ranged from 95.5 % to 105 % (n = 5). The detection limits (LODs) (S/N = 3) for thiacloprid and imidacloprid were 1.50 and 0.83 nmol L-1, respectively.


Subject(s)
Metal Nanoparticles , Neonicotinoids , Nitro Compounds , Silver , Spectrum Analysis, Raman , Thiazines , beta-Cyclodextrins , Neonicotinoids/analysis , Nitro Compounds/analysis , Nitro Compounds/chemistry , Metal Nanoparticles/chemistry , beta-Cyclodextrins/chemistry , Silver/chemistry , Thiazines/analysis , Thiazines/chemistry , Spectrum Analysis, Raman/methods , Vegetables/chemistry , Limit of Detection , Insecticides/analysis , Food Contamination/analysis
6.
Dig Dis Sci ; 69(9): 3436-3441, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39001956

ABSTRACT

BACKGROUND: Disorders of serum sodium are common among general patients and are associated with poor outcomes. The prognostic value of serum sodium disorders in patients with acute pancreatitis (AP) has not been studied. We conducted this retrospective study to explore the association between serum sodium levels and the outcomes of patients with AP. MATERIALS AND METHODS: Patients with AP from the Medical Information Mart for Intensive Care III (MIMIC-III) were screened for this study. The laboratory variables, including serum sodium levels, were obtained by analyzing the first blood sample on the first day after admission. Univariate logistic regression was performed to discover potential factors for mortality of AP. The unadjusted and adjusted association between serum sodium level and mortality of AP was shown by the restricted cubic spline (RCS). The categorical cutoff for the detrimental effect of serum sodium level on the prognosis of AP was also confirmed by stepwise logistic regression after adjusting for con-founding effects of significant factors in the univariate logistic regression. RESULTS: A total of 869 patients with AP in the MIMIC-III were included with a mortality of 13.1%. Unadjusted logistic regression showed that age (p < 0.001), simplified acute physiological score (SAPS) (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), hemoglobin (p = 0.040), serum creatinine (p = 0.046), and serum phosphorus (p < 0.001) were significantly associated with the mortality of AP. The RCS showed that the serum sodium level was negatively and linearly associated with mortality of AP after adjusting for confounding effects of significant factors in the univariate logistic regression. Serum sodium < 133 mmol/L, which indicated hyponatremia, was significantly correlated with a higher mortality risk than serum sodium ≥ 133 mmol/L (p = 0.013). CONCLUSIONS: Hyponatremia is widely developed among patients with AP and correlates with a higher mortality risk of AP. Physicians should pay more attention to managing patients with AP with hyponatremia.


Subject(s)
Hyponatremia , Pancreatitis , Sodium , Humans , Male , Female , Hyponatremia/mortality , Hyponatremia/blood , Hyponatremia/diagnosis , Middle Aged , Retrospective Studies , Pancreatitis/mortality , Pancreatitis/blood , Pancreatitis/complications , Pancreatitis/diagnosis , Aged , Sodium/blood , Prognosis , Adult , Risk Factors , Acute Disease , Logistic Models
7.
Food Chem X ; 22: 101503, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38883920

ABSTRACT

To explore the effect of postharvest dehydration on grape berries and wine quality, we determined physicochemical properties, polyphenols, antioxidant activities, volatile compounds and sensory characteristics for wines brewed by 'Marselan' (Vitis vinifera L.) grapes with 0%, 10%, 15%, 20%, and 25% of water loss. The result showed that postharvest dehydration improved the alcohol content, residual sugar and titratable acidity of Marselan wine. Phenolic compounds and antioxidant activities in wines with a dehydration of 20% have significantly increased. Postharvest dehydration increased the contents of isobutanol, isoamyl alcohol, phenylethyl alcohol, ethyl acetate, isoamyl acetate and ethyl butyrate in Marselan wines, and enhanced the floral, fruity and sweet taste of wines. Marselan wine had the lowest acceptability score under the condition of severe dehydration (25% dehydration), which was related to the significant increase of tannins content. In summary, postharvest dehydration was beneficial in improving the quality of Marselan wine.

8.
Dalton Trans ; 53(6): 2534-2540, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38234156

ABSTRACT

Designing photocatalysts with efficient charge separation and electron transport capabilities to achieve efficient visible-driven hydrogen production remains a challenge. Herein, 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions were successfully prepared by an in situ assembly. Compared to pristine g-C3N4, the ratio-optimized Ni-CAT-1/g-C3N4 exhibits approximately 3.6 times higher visible-light H2 production activity, reaching 14 mmol g-1. Through investigations using time-resolved photoluminescence, surface photovoltage, and wavelength-dependent photocurrent action spectroscopies, it is determined that the improved photocatalytic performance is attributed to enhanced charge transfer and separation, specifically the efficient transfer of excited high-energy-level electrons from g-C3N4 to Ni-CAT in the heterojunctions. Furthermore, the high electrical conductivity of Ni-CAT enables rapid electron transport, contributing to the overall enhanced performance. This work provides a feasible strategy to construct efficient dimension-matched g-C3N4-based heterojunction photocatalysts with high-efficiency charge separation for solar-driven H2 production.

9.
Food Chem ; 441: 138350, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38183725

ABSTRACT

Based on the fluorescence sensor of 3-Mercaptopropionic acid (MPA) capped CdTe quantum dots (QDs), two novel detection methods for aklomide and nitromide were developed. The MPA-CdTe QDs were synthesized and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), ultraviolet visible (UV-vis) and fluorescence (FL). The quenchings were all static. The binding constants (Ka) at different temperatures were obtained. Electrostatic forces were the main forces for the two bindings. For the detection of aklomide and nitromide, under the optimal conditions, the effects of some metal ions, glucose, bovine serum albumin (BSA) and congeneric drug on the determination were explored. The standard equations were established and the limits of detection (LOD) were 0.0215 and 0.0388 µg mL-1 (3S0/S), repectively. The methods were applied to analyse the samples of chicken and duck, the recoveries were 99.41 % - 101.24 % with RSDs of 0.29 % - 1.19 % (n = 5).


Subject(s)
Benzamides , Cadmium Compounds , Quantum Dots , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Fluorescence , Tellurium/chemistry , Spectrometry, Fluorescence
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123798, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38134660

ABSTRACT

A highly sensitive surface-enhanced Raman spectroscopy approach was established for the detection of dextromethorphan hydrobromide (DXM) utilizing nano CuO modified silver nanoparticles (CuO@AgNPs) as substrate. Ultraviolet visible spectra (UV-vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterized the synthesized CuO@AgNPs. UV-vis and fourier transform infrared (FT-IR) were adopted to investigate the interaction between DXM and CuO@AgNPs. The optimal experimental conditions (the dosages of CuO@AgNPs and NaCl as well as mixing time) were explored. The enhancement factor (EF) was 1.71 × 106. The linear relationship between SERS intensity and the concentration of DXM in the range of 67 - 1000 nmol L-1 was obtained as ISERS = 25.81 c + 40398.77, and the limit of detection (LOD) was 2.12 nmol L-1 (S/N = 3). The interference of K+, Mg2+, Zn2+, Ca2+, Cu2+, Fe3+, glucose, HSA, L-tryptophan, soluble starch and ibuprofen were investigated. The method was successfully applied to test DXM in serum samples. The recovery was 99.06% - 101.51% with the relative standard deviation (RSD) of 0.74% - 3.87%.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Dextromethorphan , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Transmission
11.
Article in English | MEDLINE | ID: mdl-38038242

ABSTRACT

Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four ß-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.

12.
Chempluschem ; : e202300640, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37947764

ABSTRACT

Metal-organic frameworks (MOFs) have been widely studied as electrocatalysts, and the research strategy to improve their electrocatalytic oxygen evolution reaction (OER) performance is to modify their structure. In this paper, two-dimensional bimetallic MOFs were constructed to improve electrocatalytic OER performance. Using a mild electrochemical method with Ni and Co as metal sources and 4, 4 '-biphenyl dicarboxylic acid (H2 BPDC) as ligand, two-dimensional NiCo-BPDC was synthesized and then deposited on a carbon cloth electrode. The results show that NiCo-BPDC/CC possessed a low overpotential of 356 mV at a current density of 20 mA cm-2 with a small Tafel slope of 86 mV dec-1 in 1.0 M KOH solution. The two-dimensional NiCo-BPDC exhibits excellent electrocatalytic OER performance because the coordination of Ni and Co in the material and the interaction of the two-dimensional materials provide a large electrochemically active surface area and expose more metal active sites for OER, thus improving the reaction efficiency and indicating NiCo-BPDC as potential OER electrocatalyst.

13.
Mycology ; 14(3): 264-274, 2023.
Article in English | MEDLINE | ID: mdl-37583453

ABSTRACT

The genus Armillaria has high edible and medical values, with zones of antagonism often occurring when different species are paired in culture on agar media, while the antagonism-induced metabolic alteration remains unclear. Here, the metabolome of mycelial exudates of two Chinese Armillaria biological species, C and G, co-cultured or cultured separately was analysed to discover the candidate biomarkers and the key metabolic pathways involved in Armillaria antagonists. A total of 2,377 metabolites were identified, mainly organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. There were 248 and 142 differentially expressed metabolites between group C-G and C, C-G, and G, respectively, and fourteen common differentially expressed metabolites including malate, uracil, Leu-Gln-Arg, etc. Metabolic pathways like TCA cycle and pyrimidine metabolism were significantly affected by C-G co-culture. Additionally, 156 new metabolites (largely organic acids and derivatives) including 32 potential antifungal compounds, primarily enriched into biosynthesis of secondary metabolites pathways were identified in C-G co-culture mode. We concluded that malate and uracil could be used as the candidate biomarkers, and TCA cycle and pyrimidine metabolism were the key metabolic pathways involved in Armillaria antagonists. The metabolic changes revealed in this study provide insights into the mechanisms underlying fungal antagonists.

14.
Adv Mater ; 35(40): e2304170, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37363880

ABSTRACT

Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.

15.
Talanta ; 260: 124635, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37167676

ABSTRACT

Two aminoglycoside antibiotics (AGs), gentamicin (GEN) and tobramycin (TOB), have good antibacterial activity against most pseudomonas aeruginosa and staphylococcus. The molecular structure of these drugs lack chromogenic groups, which brings challenges to their detection. In this project, the detecting methods for GEN and TOB utilizing surface-enhanced Raman spectroscopy (SERS) based on γ-Al2O3-modified silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) were established. The enhancement factors (EFs) of GEN and TOB were 2.44 × 105 and 2.67 × 106, respectively. The transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and spectrophotometric techniques were used to characterize the substrate and the combination of the substance with drugs. The pH, the addition amounts for the substrate and coagulant, as well as the mixing time were optimized. On the basis of single factor experiments, a more scientific response surface model was established. The concentrations of GEN and TOB showed good linear relationships with their Raman signals in the ranges of 6.67 × 10-8 - 2.00 × 10-6 and 6.67 × 10-9 - 3.00 × 10-7 mol L-1 respectively. The limits of detection (LODs) were 11.88 and 1.26 nmol L-1 for GEN and TOB, respectively. The methods were used successfully for the samples determination of the two AGs in commercial drugs and meat products.


Subject(s)
Metal Nanoparticles , Tobramycin , Tobramycin/pharmacology , Tobramycin/chemistry , Gentamicins/pharmacology , Serum Albumin, Bovine , Silver/chemistry , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology
16.
J Ethnopharmacol ; 314: 116572, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37201662

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Rhodiola granules (RG) is a traditional Tibetan medicine prescription that can be used to improve the symptoms of ischemia and hypoxia in cardiovascular and cerebrovascular diseases. However, there is no report on its use to improve myocardial ischemia/reperfusion (I/R) injury, and its potential active ingredients and mechanism against myocardial ischemia/reperfusion (I/R) injury remain unclear. AIM OF THE STUDY: This study aimed to reveal the potential bioactive components and underlying pharmacological mechanisms of RG in improving myocardial I/R injury through a comprehensive strategy. MATERIALS AND METHODS: UPLC-Q-Exactive Orbitrap/MS technology was used to analyze the chemical components of RG, the potential bioactive components and targets were tracked and predicted by the SwissADME and SwissTargetPrediction databases, and the core targets were predicted through the PPI network, as well the functions and pathways were determined by GO and KEGG analysis. In addition, the molecular docking and ligation of the anterior descending coronary artery-induced rat I/R models were experimentally validated. RESULTS: A total of 37 ingredients were detected from RG, including nine flavones, ten flavonoid glycosides, one glycoside, eight organic acids, four amides, two nucleosides, one amino acid, and two other components. Among them, 15 chemical components, such as salidroside, morin, diosmetin, and gallic acid were identified as key active compounds. Ten core targets, including AKT1, VEGF, PTGS2, and STAT3, were discovered through the analysis of the PPI network constructed from 124 common potential targets. These possible targets were involved in the regulation of oxidative stress and HIF-1/VEGF/PI3K-Akt signaling pathways. Furthermore, molecular docking confirmed that the potential bioactive compounds in RG have good potential binding abilities to AKT1, VEGFA, PTGS2, STAT3, and HIF-1α proteins. Then, the animal experiments showed that RG could significantly improve the cardiac function of I/R rats, reduce the size of myocardial infarction, improve the myocardial structure, and reduce the degree of myocardial fibrosis, inflammatory cell infiltration, and myocardial cell apoptosis rate in I/R rats. In addition, we also found that RG could decrease the concentration of AGE, Ox-LDL, MDA, MPO, XOD, SDH, Ca2+, and ROS, and increase the concentration of Trx, TrxR1, SOD, T-AOC, NO, ATP, Na+k+-ATPase, Ca2+-ATPase, and CCO. Moreover, RG could significantly down-regulate the expressions of Bax, Cleaved-caspase3, HIF-1α, and PTGS2, as well up-regulate the expressions of Bcl-2, VEGFA, p-AKT1, and p-STAT3. CONCLUSION: In summary, we revealed for the first time the potential active ingredients and mechanisms of RG for myocardial I/R injury therapy through a comprehensive research strategy. RG may synergistically improve myocardial I/R injury through anti-inflammatory, regulating energy metabolism, and oxidative stress, improving I/R-induced myocardial apoptosis, which may be related to the HIF-1/VEGF/PI3K-Akt signaling pathway. Our study provides new insights into the clinical application of RG and also provides a reference for the development and mechanism research of other Tibetan medicine compound preparations.


Subject(s)
Drugs, Chinese Herbal , Myocardial Reperfusion Injury , Rhodiola , Animals , Rats , Myocardial Reperfusion Injury/drug therapy , Network Pharmacology , Medicine, Tibetan Traditional , Cyclooxygenase 2 , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Glycosides , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
17.
J. physiol. biochem ; 79(2): 313-325, may. 2023.
Article in English | IBECS | ID: ibc-222544

ABSTRACT

Signaling by the transforming growth factor (TGF)-β superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-β superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-β superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-β superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-β superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research. (AU)


Subject(s)
Animals , Rats , Ganglia, Spinal , Transforming Growth Factor beta , Bone Morphogenetic Proteins/physiology , Diagnosis-Related Groups , Intercellular Signaling Peptides and Proteins , Pain
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122709, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37058841

ABSTRACT

A method was established for detecting the content of nitrofurazone (NFZ) by fluorescence quenching of N-Acetyl-L-Cysteine (NAC) coated cadmium telluride quantum dots (CdTe QDs). By means of transmission electron microscopy (TEM) and multispectral methods such as fluorescence and ultraviolet visible spectra (UV-vis), the synthesized CdTe QDs were characterized. The quantum yield (φ) of CdTe QDs was measured as 0.33 by reference method. The CdTe QDs had a better stability, the RSD of fluorescence intensity was 1.51% in three months. NFZ quenching the emission light of CdTe QDs was observed. The analyses of Stern-Volmer and time-resolved fluorescence suggested the quenching was static. The binding constants (Ka) between NFZ and CdTe QDs were 1.14 × 104 (293 K), 0.74 × 104 (303 K) and 0.51 × 104 (313 K) L mol-1. The hydrogen bond or van der Waals force was the dominated binding force between NFZ and CdTe QDs. The interaction was further characterized by UV-vis absorption as well as Fourier transform infrared spectra (FT-IR). Using fluorescence quenching effect, a quantitative determination of NFZ was carried out. The optimal experimental conditions were studied and determined as following: pH was 7 and contact time was 10 min. The effects of reagent addition sequence, temperature and the foreign substances including some metals (Mg2+; Zn2+; Ca2+; K+; Cu2+), glucose, bovine serum albumin (BSA) and furazolidone on the determination were studied. There was a high correlation between the concentration of NFZ (0.40 - 39.63 µg mL-1) and F0/F with the standard curve F0/F = 0.0262c + 0.9910 (r = 0.9994). The detection limit (LOD) reached 0.04 µg mL-1 (3S0/S). The contents of NFZ in beef and bacteriostatic liquid were detected. The recovery of NFZ was 95.13% - 103.03% and RSD was 0.66% - 1.37% (n = 5).


Subject(s)
Cadmium Compounds , Quantum Dots , Animals , Cattle , Quantum Dots/chemistry , Acetylcysteine , Cadmium Compounds/chemistry , Fluorescence , Tellurium/chemistry , Nitrofurazone , Spectroscopy, Fourier Transform Infrared , Spectrometry, Fluorescence/methods
19.
Diagnostics (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36980514

ABSTRACT

Breast cancer (BRCA) has an undesirable prognosis and is the second most common cancer among women after lung cancer. A novel mechanism of programmed cell death called cuproptosis is linked to the development and spread of tumor cells. However, the function of cuproptosis in BRCA remains unknown. To this date, no studies have used machine learning methods to screen for characteristic genes to explore the role of cuproptosis-related genes (CRGs) in breast cancer. Therefore, 14 cuproptosis-related characteristic genes (CRCGs) were discovered by the feature selection of 39 differentially expressed CRGs using the three machine learning methods LASSO, SVM-RFE, and random forest. Through the PPI network and immune infiltration analysis, we found that PRNP was the key CRCG. The miRTarBase, TargetScan, and miRDB databases were then used to identify hsa-miR-192-5p and hsa-miR-215-5p as the upstream miRNA of PRNP, and the upstream lncRNA, CARMN, was identified by the StarBase database. Thus, the mRNA PRNP/miRNA hsa-miR-192-5p and hsa-miR-215-5p/lncRNA CARMN ceRNA network was constructed. This ceRNA network, which has not been studied before, is extremely innovative. Furthermore, four cuproptosis-related lncRNAs (CRLs) were screened in TCGA-BRCA by univariate Cox, LASSO, and multivariate Cox regression analysis. The risk model was constructed by using these four CRLs, and the risk score = C9orf163 * (1.8365) + PHC2-AS1 * (-2.2985) + AC087741.1 * (-0.9504) + AL109824.1 * (0.6016). The ROC curve and C-index demonstrated the superior predictive capacity of the risk model, and the ROC curve demonstrated that the AUC of 1-, 3-, and 5-year OS in all samples was 0.721, 0.695, and 0.633, respectively. Finally, 50 prospective sensitive medicines were screened with the pRRophetic R package, among which 17-AAG may be a therapeutic agent for high-risk patients, while the other 49 medicines may be suitable for the treatment of low-risk patients. In conclusion, our study constructs a new ceRNA network and a novel risk model, which offer a theoretical foundation for the treatment of BRCA and will aid in improving the prognosis of BRCA.

20.
Magn Reson Chem ; 61(7): 443-447, 2023 07.
Article in English | MEDLINE | ID: mdl-36960574

ABSTRACT

A new amide tricholomine C was isolated from the dried fruiting bodies of Tricholoma bakamatsutake. Its structure was identified by a combination of nuclear magnetic resonance spectroscopic analysis and electronic circular dichroism (ECD) calculations. The ethyl alcohol crude extract and tricholomines A-C from T. bakamatsutake were evaluated for neuroprotective activities. Of these substances, the crude extract showed weak neurite outgrowth-promoting activity in rat pheochromocytoma (PC12) cells, as well as weak inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Rats , Animals , Butyrylcholinesterase/analysis , Acetylcholinesterase/analysis , Amides/pharmacology , Amides/analysis , Fruiting Bodies, Fungal/chemistry , Complex Mixtures/analysis
SELECTION OF CITATIONS
SEARCH DETAIL