Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.177
Filter
1.
Sci Rep ; 14(1): 16270, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009650

ABSTRACT

Steroid-induced osteonecrosis of the femoral head (SONFH) is the predominant cause of non-traumatic osteonecrosis of the femoral head (ONFH). Impaired blood supply and reduced osteogenic activity of the femoral head are the key pathogenic mechanisms of SONFH. Fibroblast growth factor 23 (FGF23) levels are not only a biomarker for early vascular lesions caused by abnormal mineral metabolism, but can also act directly on the peripheral vascular system, leading to vascular pathology. The aim of this study was to observe the role of FGF23 on bone microarchitecture and vascular endothelium, and to investigate activation of pyroptosis in SONFH. Lipopolysaccharide (LPS) combined with methylprednisolone (MPS) was applied for SONFH mouse models, and adenovirus was used to increase or decrease the level of FGF23. Micro-CT and histopathological staining were used to observe the structure of the femoral head, and immunohistochemical staining was used to observe the vascular density. The cells were further cultured in vitro and placed in a hypoxic environment for 12 h to simulate the microenvironment of vascular injury during SONFH. The effect of FGF23 on osteogenic differentiation was evaluated using alkaline phosphatase staining, alizarin red S staining and expression of bone formation-related proteins. Matrigel tube formation assay in vitro and immunofluorescence were used to detect the ability of FGF23 to affect endothelial cell angiogenesis. Steroids activated the pyroptosis signaling pathway, promoted the secretion of inflammatory factors in SONFH models, led to vascular endothelial dysfunction and damaged the femoral head structure. In addition, FGF23 inhibited the HUVECs angiogenesis and BMSCs osteogenic differentiation. FGF23 silencing attenuated steroid-induced osteonecrosis of the femoral head by inhibiting the pyroptosis signaling pathway, and promoting osteogenic differentiation of BMSCs and angiogenesis of HUVECs in vitro.


Subject(s)
Femur Head Necrosis , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Osteogenesis , Pyroptosis , Pyroptosis/drug effects , Fibroblast Growth Factor-23/metabolism , Animals , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Femur Head Necrosis/pathology , Mice , Fibroblast Growth Factors/metabolism , Osteogenesis/drug effects , Humans , Femur Head/pathology , Femur Head/metabolism , Disease Models, Animal , Methylprednisolone/pharmacology , Male , Lipopolysaccharides/toxicity , Human Umbilical Vein Endothelial Cells/metabolism , Cell Differentiation , Steroids/pharmacology
2.
JCI Insight ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954463

ABSTRACT

Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLO) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLO regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin alpha (LTα) - lymphotoxin beta receptor (LTßR) pathway, which is essential for TLO formation, to define the role of TLO in transplantation. We showed that intragraft TLO are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLO in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLO or LTα overexpression accelerated rejection. If the LTßR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival prolonged. Intravital microscopy of renal TLO demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLO contributes to local immune responses, leading to earlier allograft failure. TLO and the LTαß-LTßR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases such as autoimmunity or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.

3.
Expert Opin Investig Drugs ; : 1-6, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38980318

ABSTRACT

INTRODUCTION: Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder characterized by acute paralysis. A significant portion of patients are left with residual deficits, which presents a considerable global healthcare challenge. The precise mechanisms underlying GBS pathogenesis are not fully elucidated. Recent studies have focused on postinfectious molecular mimicry and identified involvement of IgG autoantibodies and innate immune effectors in GBS. Intravenous immunoglobulins (IVIg) and plasma exchange (PE) are two established evidence-based immunomodulatory treatments for GBS, but a significant proportion of GBS patients fails to respond adequately to either therapy. This emphasizes an urgent need for novel and more potent treatments. AREAS COVERED: We discuss novel immunomodulatory therapies presently at different phases of preclinical and clinical investigation. Some drugs in development target pathophysiologic mechanisms such as IgG autoantibody catabolism and complement activation, which are relevant to GBS. EXPERT OPINION: There is an unmet need for more effective immune therapies for GBS. New immunomodulatory therapies under development may provide more potent options for GBS patients who do not respond to IVIg or PE. Future directions may include incorporating neuroprotective interventions based on evolving understanding of mechanisms underlying nerve injury and axonal degeneration.

4.
Nano Lett ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984749

ABSTRACT

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

5.
Transl Androl Urol ; 13(6): 940-948, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983470

ABSTRACT

Background: Ureteral strictures (US) could lead to impaired kidney function, which was alleviated by ureteral reconstruction surgery. However, solitary kidney (SK) patients with US were more complicated to treat. This study aimed to evaluate the impact of reconstruction surgery on renal function based on estimated glomerular filtration rate (eGFR) in patients with SK. Methods: We retrospectively enrolled patients who underwent reconstruction surgery between April 2014 to March 2022. eGFR was measured pre- and postoperatively. The 'static renal function' was defined as a change in eGFR of 20% or less at the last follow-up, and the 'worsening renal function group' was defined as a decrease of greater than 20%. Results: A total of 61 SK patients were involved. The success rate of ureteral reconstruction surgery was 90.16% (55/61). The median follow-up time was 20.8 months (range, 3.7-109.2 months). The median eGFR was 65.5 (range, 15.1-99.9) and 65.3 (range, 3.8-123.4) mL/min/1.73 m2 at the baseline and the last follow-up. No statistically significant difference in eGFR was observed between the preoperative baseline and last follow-up visits (P=0.58). However, in patients with baseline renal dysfunction [chronic kidney disease (CKD) stage 3-5], the eGFR significantly improved at the last follow-up compared to the baseline (P=0.02). Three patients developed a 'worsening renal function' (4.92%). Besides, the systolic blood pressures (SBP) at follow-up significantly reduced compared to the preoperative baseline (P=0.002). Conclusions: Ureteral reconstruction surgery is an effective treatment to preserve renal function, which also achieves a high success rate and is associated with the reduction of SBP for SK patients with US.

6.
Curr Res Food Sci ; 8: 100778, 2024.
Article in English | MEDLINE | ID: mdl-38854501

ABSTRACT

Lutein (Lut) and zeaxanthin (Zx) are promising healthy food ingredients; however, the low solubilities, stabilities, and bioavailabilities limit their applications in the food and beverage industries. A protein-based complex represents an efficient protective carrier for hydrophobic ligands, and its ligand-binding properties are influenced by the formulation conditions, particularly the pH level. This study explored the effects of various pH values (2.5-9.5) on the characteristics of whey protein isolate (WPI)-Lut/Zx complexes using multiple spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, and Fourier transform infrared (FTIR) spectroscopies and dynamic light scattering (DLS). UV-Vis and DLS spectra revealed that Lut/Zx were present as H-aggregates in aqueous solutions, whereas WPI occurred as nanoparticles. The produced WPI-Lut/Zx complexes exhibited binding constants of 104-105 M-1, which gradually increased with increasing pH from 2.5 to 9.5. FTIR spectra demonstrated that pH variations and Lut/Zx addition caused detectable changes in the secondary WPI structure. Moreover, the WPI-Lut/Zx complexes effectively improved the physicochemical stabilities and antioxidant activities of Lut/Zx aggregates during long-term storage and achieved bioaccessibilities above 70% in a simulated gastrointestinal digestion process. The comprehensive data obtained in this study offer a basis for formulating strategies that can be potentially used in developing commercially available WPI complex-based xanthophyll-rich foods.

7.
PeerJ ; 12: e17417, 2024.
Article in English | MEDLINE | ID: mdl-38827307

ABSTRACT

Background: Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods: Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results: A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1ß were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion: Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.


Subject(s)
Protein Interaction Maps , Humans , Gene Expression Profiling , Osteoarthritis/genetics , Osteoarthritis/immunology , Osteoarthritis/pathology , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/immunology , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Male , Tibia/pathology , Tibia/immunology , Tibia/metabolism , Down-Regulation , Female
8.
mLife ; 3(1): 101-109, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38827508

ABSTRACT

Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656  translocatable  IS 26 -bounded  units with  ARGs (tIS26-bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS26 to these genes was 41.2%. We found that  IS 26 -bounded  units (IS26-bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS26-bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS26. Finally, we experimentally confirmed that the introduction of a single copy of IS26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance.

9.
Adv Sci (Weinh) ; : e2309972, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937990

ABSTRACT

Klebsiella pneumoniae, a major clinical pathogen known for causing severe infections, is attracting heightened attention due to its escalating antibiotic resistance. Phages are emerging as a promising alternative to antibiotics; however, their specificity to particular hosts often restricts their use. In this study, a collection of 114 phages is obtained and subjected to analysis against 238 clinical K. pneumoniae strains, revealing a spectrum of lytic behaviors. A correlation between putative tail protein clusters and lysis patterns leads to the discovery of six receptor-binding protein (RBP) clusters that determine host capsule tropism. Significantly, RBPs with cross-capsular lysis capabilities are identified. The newly-identified RBPs provide a toolbox for customizing phages to target diverse capsular types. Building on the toolbox, the engineered phages with altered RBPs successfully shifted and broadened their host capsule tropism, setting the stage for tunable phage that offer a precise and flexible solution to combat K. pneumoniae infections.

10.
J Therm Biol ; 122: 103881, 2024 May.
Article in English | MEDLINE | ID: mdl-38870755

ABSTRACT

Heat stress (HS) poses a substantial threat to animal growth and development, resulting in declining performance and economic losses. The intestinal system is susceptible to HS and undergoes intestinal hyperthermia and pathological hypoxia. Hypoxia-inducible factor-1α (HIF-1α), a key player in cellular hypoxic adaptation, is influenced by prolyl-4-hydroxylase 2 (PHD2) and heat shock protein 90 (HSP90). However, the comprehensive regulation of HIF-1α in the HS intestine remains unclear. This study aims to explore the impact of HS on pig intestinal mucosa and the regulatory mechanism of HIF-1α. Twenty-four Congjiang Xiang pigs were divided into the control and five HS-treated groups (6, 12, 24, 48, and 72 h). Ambient temperature and humidity were maintained in a thermally-neutral state (temperature-humidity index (THI) < 74) in the control group, whereas the HS group experienced moderate HS (78 < THI <84). Histological examination revealed villus exfoliation after 12 h of HS in the duodenum, jejunum, and ileum, with increasing damage as HS duration extended. The villus height to crypt depth ratio (V/C) decreased and goblet cell number increased with prolonged HS. Quantitative real-time PCR, Western blot, and immunohistochemistry analysis indicated increased expression of HIF-1α and HSP90 in the small intestine with prolonged HS, whereas PHD2 expression decreased. Further investigation in IPEC-J2 cells subjected to HS revealed that overexpressing PHD2 increased PHD2 mRNA and protein expression, while it decreases HIF-1α. Conversely, interfering with HSP90 expression substantially decreased both HSP90 and HIF-1α mRNA and protein levels. These results suggest that HS induces intestinal hypoxia with concomitant small intestinal mucosal damage. The expression of HIF-1α in HS-treated intestinal epithelial cells may be co-regulated by HSP90 and PHD2 and is possibly linked to intestinal hyperthermia and hypoxia.


Subject(s)
Epithelial Cells , HSP90 Heat-Shock Proteins , Heat-Shock Response , Hypoxia-Inducible Factor 1, alpha Subunit , Intestine, Small , Animals , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Swine , Intestine, Small/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Cell Line
11.
Appl Opt ; 63(13): 3695-3701, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856556

ABSTRACT

Ellipse fitting algorithms (EFAs) have been widely used in 3×3 coupler demodulation systems to reduce the requirement for symmetry of the 3×3 couplers. Based on the relative stability of the splitting ratio and phase difference after the establishment of the 3×3 coupler demodulation system, we solve the problem that EFA fails to work when the stimulating signal is small. Depending on the existence of a symmetry point about the origin, an additional phase shift judgment module is used to determine whether the Lissajous figure is larger than π rad. If the elliptical arc exceeds π rad, the EFA is executed. Otherwise, the previous parameters are used to correct the ellipse. Parameters are updated in real time to ensure high precision. The experimental results show that the total harmonic distortion (THD) of the ameliorated algorithm is improved by 1.28% compared to the EFA without the judgment module with a stimulus amplitude of 30 mV. The proposed scheme can effectively improve the dynamic range of the 3×3 coupler demodulation to reach 125.64 dB @ 1 kHz and 1% THD. The algorithm ensures the effective operation of the EFA under small phase shift conditions and improves the accuracy of phase demodulation.

12.
Toxicol In Vitro ; 99: 105875, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857852

ABSTRACT

OBJECTIVE: This study aims to investigate the functional interplay between transcription factor YY1 and nucleoporin 93 (NUP93) in regulating the malignancy of bladder cancer cells. METHODS: NUP93 expressions in bladder cancer tissues and normal counterparts were analyzed using a public dataset and clinical samples. NUP93 and Yin Yang 1 (YY1) mRNA expression and protein levels in T24 and RT4 cells were determined by Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of NUP93 knockdown on the proliferation, migration, and invasion capabilities of cells was evaluated. Concurrently, transcriptional regulation of NUP93 by YY1 was confirmed using a dual luciferase assay. The effect of NUP93 knockdown on tumorigenesis was evaluate in a subcutaneous xenograft mouse model. RESULTS: Elevated levels of NUP93 in bladder cancer tissues and cell lines were observed. Silencing NUP93 significantly suppressed glycolysis, impeded the growth, migration, invasion and tumor formation of bladder cancer cells. The transcription factor YY1 acted as a positive regulator to upregulate NUP93 expression. YY1 overexpression partially rescued the effects of NUP93 silencing on bladder cancer cells. CONCLUSION: Our results uncovered transcription factor YY1 as a positive regulator of NUP93 expression, and NUP93 serves as an oncogenic factor to sustain the malignancy of bladder cancer cells. These findings suggest that targeting the YY1-NUP93 axis could offer novel therapeutic strategies for bladder cancer treatment.

13.
Micromachines (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38930673

ABSTRACT

The ever-growing prominence and widespread acceptance of organic light-emitting diodes (OLEDs), particularly those employing thermally activated delayed fluorescence (TADF), have firmly established them as formidable contenders in the field of lighting technology. TADF enables achieving a 100% utilization rate and efficient luminescence through reverse intersystem crossing (RISC). However, the effectiveness of TADF-OLEDs is influenced by their high current density and limited device lifetime, which result in a significant reduction in efficiency. This comprehensive review introduces the TADF mechanism and provides a detailed overview of recent advancements in the development of host-free white OLEDs (WOLEDs) utilizing TADF. This review specifically scrutinizes advancements from three distinct perspectives: TADF fluorescence, TADF phosphorescence and all-TADF materials in host-free WOLEDs. By presenting the latest research findings, this review contributes to the understanding of the current state of host-free WOLEDs, employing TADF and underscoring promising avenues for future investigations. It aims to serve as a valuable resource for newcomers seeking an entry point into the field as well as for established members of the WOLEDs community, offering them insightful perspectives on imminent advancements.

14.
Micromachines (Basel) ; 15(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930769

ABSTRACT

The surface morphology of perovskite films significantly influences the performance of perovskite light-emitting diodes (PeLEDs). However, the thin perovskite thickness (~10 nm) results in low surface coverage on the substrate, limiting the improvement of photoelectric performance. Here, we propose a molecular additive strategy that employs pentafluorophenyl diphenylphosphinate (FDPP) molecules as additives. P=O and Pentafluorophenyl (5F) on FDPP can coordinate with Pb2+ to slow the crystallization process of perovskite and enhance surface coverage. Moreover, FDPP reduces the defect density of perovskite and enhances the crystalline quality. The maximum brightness, power efficiency (PE), and external quantum efficiency (EQE) of the optimal device reached 24,230 cd m-2, 82.73 lm W-1, and 21.06%, respectively. The device maintains an EQE of 19.79% at 1000 cd m-2 and the stability is further enhanced. This study further extends the applicability of P=O-based additives.

15.
Front Plant Sci ; 15: 1392904, 2024.
Article in English | MEDLINE | ID: mdl-38766469

ABSTRACT

Mercury (Hg), as a global pollutant, is persistent, migratory, insidious, highly biotoxic and highly enriched, and is widely distributed in the atmosphere, hydrosphere, biosphere and lithosphere. Wetland ecosystems, as active mercury reservoirs, have become the most important sources and sinks of heavy metal mercury. Distinguished from natural wetlands, artificial wetlands located in urban sections of rivers face problems such as diverse urban pollution sources and complex spatial and temporal changes. Therefore, in this study, five intermittently distributed artificial wetlands were selected from the upstream to the downstream of the Changchun section of the Yitong River, a tributary of the Songhua River basin in the old industrial base of Northeast China. The mercury levels in the water bodies, sediments and plants of the artificial wetlands were collected and tested in four quarters from April 2023 to analyse the spatial and temporal distribution characteristics of total mercury. The results showed that the mercury levels in the water bodies, sediments and plants of the five wetlands showed a fluctuating trend with the river flow direction and had certain spatial and temporal distribution characteristics. This phenomenon was attributed to the sinking of external mercury pollution sources. In general, the wetland ecosystems showed a decreasing trend in the total Hg output of the downstream watershed. This may be due to the retention of particulate matter by aquatic plants in artificial wetlands to regular salvage of dead aquatic plants. At the same time urbanization and industrialization affect mercury levels in aquatic environments, so the risk of residential exposure needs to be looked at.

17.
Prev Med Rep ; 42: 102741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721570

ABSTRACT

Background: The purpose of this study was to examine the relationship between sleep duration and risk of sarcopenia in in general U.S. population. Methods: Utilizing publicly available data from the National Health and Nutrition Examination Survey spanning from 2011 to 2014, we explored the association between sleep duration and prevalence of sarcopenia. To investigate their relationship, we conducted weighted multivariate logistic regression analysis, restricted cubic splines (RCS) curve, and subgroup analysis. Results: The study included 8,200 individuals, among whom 99 (0.9 %) had sarcopenia. The RCS curve revealed a U-shaped association of sarcopenia with sleep duration (P for nonlinearity = 0.020), showing that the risk of sarcopenia decreases with increasing sleep duration, reaching the lowest risk around 6.67 h. After controlling for underlying cofounders, compared to individuals with sleep duration < 5 h, the odds ratios with 95 % confidence intervals of sarcopenia were 0.64 (0.27, 1.49), 0.50 (0.20, 1.26), 0.65 (0.27, 1.60), and 2.31 (0.73, 7.30) for < 5-6, 6.5-7.5, 8-9, and > 9 h group. The U-shaped association between sleep time and prevalence of sarcopenia also was observed in the subjects who aged < 40 or ≥ 40 years, were male or female, with or without hypertension, and diabetes mellitus. Conclusions: In summary, both short and long sleep durations increased prevalence of sarcopenia. Further studies are needed to explore the underlying mechanisms.

18.
Small Methods ; : e2400177, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721966

ABSTRACT

This study addresses a crucial challenge in two-dimensional (2D) material-based electronic devices-inefficient heat dissipation across the van der Waals (vdW) interface connecting the 2D material to its three-dimensional (3D) substrate. The objective is to enhance the interfacial thermal conductance (ITC) of 2D/3D heterostructures without compromising the intrinsic thermal conductivities (κ) of 2D materials. Using 2D-MoS2/3D-GaN as an example, a novel strategy to enhance both the ITC across 2D/3D interface and κ of 2D material is proposed by introducing a controlled concentration (ρ) of vacancy defects to substrate's bottom surface. Molecular dynamics simulations demonstrate a notable 2.1-fold higher ITC of MoS2/GaN at ρ = 4% compared to the no-defective counterpart, along with an impressive 56% enhancement in κ of MoS2 compared to the conventional upper surface modification approaches. Phonon dynamics analysis attributes the ITC enhancement to increased phonon coupling between MoS2 and GaN, resulting from polarization conversion and hybridization of phonons at the defective surface. Spectral energy density analysis affirms that the improved κ of MoS2 directly results from the proposed strategy, effectively reducing phonon scattering at the interface. This work provides an effective approach for enhancing heat transfer in 2D/3D vdW heterostructures, promisingly advancing electronics' heat dissipation.

19.
PNAS Nexus ; 3(5): pgae179, 2024 May.
Article in English | MEDLINE | ID: mdl-38737767

ABSTRACT

Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.

20.
PeerJ ; 12: e17422, 2024.
Article in English | MEDLINE | ID: mdl-38803579

ABSTRACT

Background: There is a paucity of knowledge concerning the psychological variables that serve to facilitate the connection between physical activity and self-efficacy, and the factors capable of moderating these pathways. This study aimed to examine the relationship between physical activity and self-efficacy among college students, with a focus on the mediating effect of grit and the moderating effect of gender. Methods: This study recruited 3,228 undergraduate students from a university in Shanghai, China. They completed the General Self-Efficacy Scale, the Short Grit Scale, and the International Physical Activity Questionnaire. Statistical analysis was conducted using SPSS 26.0 and the Process v4.0 plugin. Results: Physical activity had both a direct effect on self-efficacy (ß = 0.07, 95% CI [0.04-0.11]) and an indirect effect through the two dimensions of grit: perseverance of effort (ß = 0.06, 95% CI [0.04-0.07]) and consistency of interest (ß = 0.03, 95% CI [0.02-0.04]). The mediating effect explained 53.27% of the total effect. Furthermore, gender moderated the relationship between perseverance of effort and self-efficacy, with a stronger effect observed in males (ß = 0.08, t = 3.27, p < 0.01). Conclusion: The results revealed that grit is an underlying psychological mechanism that links physical activity and self-efficacy. Moreover, gender moderates the effect of perseverance of effort on self-efficacy, with a stronger effect observed in males. These findings have practical implications for educators to design tailored physical activity interventions that foster grit and self-efficacy among college students.


Subject(s)
Exercise , Self Efficacy , Students , Humans , Female , Male , Students/psychology , Young Adult , Universities , China , Sex Factors , Exercise/psychology , Surveys and Questionnaires , Adolescent , Adult
SELECTION OF CITATIONS
SEARCH DETAIL