Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Biomolecules ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927118

ABSTRACT

Ginseng (Panax ginseng C. A. Meyer) is an ancient and valuable Chinese herbal medicine, and ginsenoside, as the main active ingredient of ginseng, has received wide attention because of its various pharmacological active effects. Cytochrome P450 is the largest family of enzymes in plant metabolism and is involved in the biosynthesis of terpenoids, alkaloids, lipids, and other primary and secondary plant metabolites. It is significant to explore more PgCYP450 genes with unknown functions and reveal their roles in ginsenoside synthesis. In this study, based on the five PgCYP450 genes screened in the pre-laboratory, through the correlation analysis with the content of ginsenosides and the analysis of the interactions network of the key enzyme genes for ginsenoside synthesis, we screened out those highly correlated with ginsenosides, PgCYP309, as the target gene from among the five PgCYP450 genes. Methyl jasmonate-induced treatment of ginseng adventitious roots showed that the PgCYP309 gene responded to methyl jasmonate induction and was involved in the synthesis of ginsenosides. The PgCYP309 gene was cloned and the overexpression vector pBI121-PgCYP309 and the interference vector pART27-PgCYP309 were constructed. Transformation of ginseng adventitious roots by the Agrobacterium fermentum-mediated method and successful induction of transgenic ginseng hairy roots were achieved. The transformation rate of ginseng hairy roots with overexpression of the PgCYP309 gene was 22.7%, and the transformation rate of ginseng hairy roots with interference of the PgCYP309 gene was 40%. Analysis of ginseng saponin content and relative gene expression levels in positive ginseng hairy root asexual lines revealed a significant increase in PPD, PPT, and PPT-type monomeric saponins Re and Rg2. The relative expression levels of PgCYP309 and PgCYP716A53v2 genes were also significantly increased. PgCYP309 gene promotes the synthesis of ginsenosides, and it was preliminarily verified that PgCYP309 gene can promote the synthesis of dammarane-type ginsenosides.


Subject(s)
Cytochrome P-450 Enzyme System , Ginsenosides , Panax , Panax/genetics , Panax/metabolism , Panax/enzymology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Ginsenosides/metabolism , Ginsenosides/biosynthesis , Gene Expression Regulation, Plant/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology , Acetates/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism
2.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872078

ABSTRACT

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Subject(s)
Acetates , Cyclopentanes , Gene Expression Regulation, Plant , Multigene Family , Oxylipins , Panax , Phylogeny , Plant Proteins , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Panax/genetics , Panax/metabolism , Panax/drug effects , Acetates/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Profiling , Genes, Plant , Ginsenosides
3.
Int J Biol Macromol ; 270(Pt 1): 132362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750864

ABSTRACT

The prophylactic and adjunctive impacts of compound prebiotics (CP), comprising galacto-oligosaccharides, fructo-oligosaccharides, and isomalto-oligosaccharides, on colitis remain unclear. This study aimed to elucidate the effects of CP on dextran sodium sulfate (DSS)-induced colitis via modulation of the gut microbiota. Mice received prophylactic CP (PCP) for three weeks and DSS in the second week. In the third week, therapeutic CP, mesalazine, and a combination of CP and mesalazine (CPM) were administered to mice with DSS-induced colitis. The administration of PCP and CPM was found to ameliorate colitis, as evidenced by increases in body weight and colon length, elevation of the anti-inflammatory cytokine IL-10, and reductions in the disease activity index, histological scores, and levels of pro-inflammatory cytokines in mice with DSS-induced colitis on days 14 or 21. Furthermore, an increase in the relative abundance of probiotics (Ligilactobacillus, Bifidobacterium, and Limosilactobacillus), alpha diversity indices, short-chain fatty acids (SCFA) contents, and microbial network complexity was observed following PCP or CPM treatment. Correlation analysis revealed positive associations between these probiotics and both SCFA and IL-10, and negative associations with pro-inflammatory cytokines. This study highlighted the potential of CP as novel prophylactic and adjunctive treatments for alleviating DSS-induced intestinal inflammation and maintaining gut microbiota homeostasis.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Prebiotics , Animals , Prebiotics/administration & dosage , Gastrointestinal Microbiome/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Dextran Sulfate/adverse effects , Mice , Male , Cytokines/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Probiotics/administration & dosage , Disease Models, Animal , Interleukin-10/metabolism , Fatty Acids, Volatile/metabolism
4.
FASEB J ; 38(10): e23684, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38795334

ABSTRACT

Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and ß-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.


Subject(s)
Adipocytes , Adiponectin , Cathepsin K , Cell Differentiation , Dipeptidyl Peptidase 4 , Glucagon-Like Peptide 1 , Mice, Knockout , Animals , Mice , Adiponectin/metabolism , Glucagon-Like Peptide 1/metabolism , Adipocytes/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Male , Mice, Inbred C57BL , Stress, Psychological/metabolism , 3T3-L1 Cells , Exenatide/pharmacology , PPAR gamma/metabolism , Adipogenesis
5.
Biomolecules ; 14(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540764

ABSTRACT

Ginseng (Panax ginseng C.A. Meyer) is a perennial herb belonging to the family Araliaceae and has been used for thousands of years in East Asia as an essential traditional medicine with a wide range of pharmacological activities of its main active ingredient, ginsenosides. The AP2/ERF gene family, widely present in plants, is a class of transcription factors capable of responding to ethylene regulation that has an influential role in regulating the synthesis of major active ingredients in medicinal plants and in response to biotic and abiotic stresses, which have not been reported in Panax ginseng. In this study, the AP2/ERF gene was localized on the ginseng chromosome, and an AP2/ERF gene duplication event was also discovered in Panax ginseng. The expression of seven ERF genes and three key enzyme genes related to saponin synthesis was measured by fluorescence quantitative PCR using ethylene treatment of ginseng hairy roots, and it was observed that ethylene promoted the expression of genes related to the synthesis of ginsenosides, among which the PgERF120 gene was the most sensitive to ethylene. We analyzed the sequence features and expression patterns of the PgERF120 gene and found that the expression of the PgERF120 gene was specific in time and space. The PgERF120 gene was subsequently cloned, and plant overexpression and RNA interference vectors were constructed. Ginseng adventitious roots were transformed using the Agrobacterium tumefaciens-mediated method to obtain transgenic ginseng hairy roots, and the gene expression, ginsenoside content and malondialdehyde content in overexpression-positive hairy roots were also analyzed. This study preliminarily verified that the PgERF120 gene can be involved in the regulation of ginsenoside synthesis, which provides a theoretical basis for the study of functional genes in ginseng and a genetic resource for the subsequent use of synthetic biology methods to improve the yield of ginsenosides.


Subject(s)
Ginsenosides , Panax , Panax/genetics , Panax/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant
6.
Plants (Basel) ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475452

ABSTRACT

Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes.

7.
BMC Plant Biol ; 24(1): 47, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216888

ABSTRACT

Panax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.


Subject(s)
Ginsenosides , Panax , Ginsenosides/metabolism , Panax/genetics , Panax/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Gene Expression Regulation, Plant , Plant Roots/metabolism
8.
Plants (Basel) ; 12(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37653897

ABSTRACT

Panax ginseng is a valuable medicinal herb of the Araliaceae family with various pharmacological activities. The Trihelix transcription factors family is involved in growth and secondary metabolic processes in plants, but no studies have been reported on the involvement of Trihelix genes in secondary metabolic processes in ginseng. In this study, weighted co-expression network analysis, correlation analysis between PgGTs and ginsenosides and key enzyme genes, and interaction network analysis between PgGTs and key enzyme genes were used to screen out the PgGT25-04 gene, which was negatively correlated with ginsenoside synthesis. Using ABA treatment of ginseng hair roots, PgGT genes were found to respond to ABA signals. Analysis of the sequence characteristics and expression pattern of the PgGT25-04 gene in ginseng revealed that its expression is spatiotemporally specific. The interfering vector pBI121-PgGT25-04 containing the PgGT25-04 gene was constructed, and the ginseng adventitious roots were transformed using the Agrobacterium-mediated method to obtain the pBI121-PgGT25-04 positive hairy root monocot line. The saponin contents of positive ginseng hair roots were measured by HPLC, and the changes in PgGT25-04 and key enzyme genes in positive ginseng hair roots were detected via fluorescence quantitative RT-PCR. These results preliminarily identified the role of the PgGT25-04 gene in the secondary metabolism of ginseng in Jilin to provide a theoretical basis for the study of Trihelix transcription factors in Panax ginseng.

9.
Endocr Connect ; 12(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37681442

ABSTRACT

To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4-/- mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 µg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9-39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9-39. Exendin9-39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9-39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9-39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4-/- mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.

10.
Plants (Basel) ; 12(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687317

ABSTRACT

Panax ginseng, renowned for its medicinal properties, relies on adventitious roots and hairy roots as crucial sources for the production of ginsenosides. Despite the widespread utilization of ginseng, investigations into its miRNAs have remained scarce. To address this gap, two samples of ginseng adventitious roots and ginseng hairy roots were collected, and subsequent construction and sequencing of small RNA libraries of ginseng adventitious roots and hairy roots were performed using the Illumina HiSeq X Ten platform. The analysis of the sequencing data unveiled total miRNAs 2432. The miR166 and miR396 were the most highly expressed miRNA families in ginseng. The miRNA expression analysis results were used to validate the qRT-PCR. Target genes of miRNA were predicted and GO function annotation and KEGG pathway analysis were performed on target genes. It was found that miRNAs are mainly involved in synthetic pathways and biological processes in plants, which include metabolic and bioregulatory processes. The plant miRNAs enriched KEGG pathways are associated with some metabolism, especially amino acid metabolism and carbohydrate metabolism. These results provide valuable insights miRNAs and their roles in metabolic processes in ginseng.

11.
PLoS One ; 18(8): e0290163, 2023.
Article in English | MEDLINE | ID: mdl-37590202

ABSTRACT

Ginseng, a valuable Chinese medicinal herb, is renowned worldwide for its effectiveness in alleviating certain conditions and promoting overall health. In this study, we performed weighted gene co-expression network analysis (WGCNA) on the accumulation of essential saponins under the influence of 13 essential environmental factors (including air temperature, air bottom temperature, surface mean temperature, soil temperature, surface shortwave radiation, soil moisture, soil water content, rainfall, total precipitation, elevation, soil type, soil pH, and soil water potential). We identified a total of 40 transcript modules associated with typical environmental factors and the accumulation of essential saponins. Among these, 18 modules were closely related to the influence of typical environmental factors, whereas 22 modules were closely related to the accumulation of essential saponins. These results were verified by examining the transcriptome, saponin contents, environmental factor information and the published data and revealed the regulatory basis of saponin accumulation at the transcriptome level under the influence of essential environmental factors. We proposed a working model of saponin accumulation mediated by the transcriptional regulatory network that is affected by typical environmental factors. An isomorphic white-box neural network was constructed based on this model and the predicted results of the white-box neural network correlated with saponin accumulation. The effectiveness of our correlation-directed graph in predicting saponin contents was verified by bioinformatics analysis based on results obtained in this study and transcripts known to affect the biosynthesis of saponin Rb1. The directed graph represents a useful tool for manipulating saponin biosynthesis while considering the influence of essential environmental factors in ginseng and other medicinal plants.


Subject(s)
Ginsenosides , Panax , Saponins , Transcriptome , Panax/genetics , Soil , Water
12.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569353

ABSTRACT

Ginseng (Panax ginseng C.A. Meyer) is a perennial herb of the Araliaceae family, a traditional and valuable Chinese herb in China. The main active component of ginseng is ginsenoside. The NAC transcription factors belong to a large family of plant-specific transcription factors, which are involved in growth and development, stress response and secondary metabolism. In this study, we mapped the NAC gene family on 24 pairs of ginseng chromosomes and found numerous gene replications in the genome. The NAC gene PgNAC41-2, found to be highly related to ginsenoside synthesis, was specifically screened. The phylogeny and expression pattern of the PgNAC41-2 gene were analyzed, along with the derived protein sequence, and a structure model was generated. Furthermore, the PgNAC41-2 gene was cloned and overexpressed by a Rhizobium rhizogenes mediated method, using ginseng petioles as receptor material. The saponin content of the transformed material was analyzed to verify the function of the NAC transcription factor in ginseng. Our results indicate that the PgNAC41-2 gene positively regulates the biosynthesis of saponins.


Subject(s)
Ginsenosides , Panax , Saponins , Saponins/metabolism , Amino Acid Sequence , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
13.
Front Plant Sci ; 14: 1165349, 2023.
Article in English | MEDLINE | ID: mdl-37575919

ABSTRACT

Genetic and molecular knowledge of a species is crucial to its gene discovery and enhanced breeding. Here, we report the genetic and molecular dissection of ginseng, an important herb for healthy food and medicine. A mini-core collection consisting of 344 cultivars and landraces was developed for ginseng that represents the genetic variation of ginseng existing in its origin and diversity center. We sequenced the transcriptomes of all 344 cultivars and landraces; identified over 1.5 million genic SNPs, thereby revealing the genic diversity of ginseng; and analyzed them with 26,600 high-quality genic SNPs or a selection of them. Ginseng had a wide molecular diversity and was clustered into three subpopulations. Analysis of 16 ginsenosides, the major bioactive components for healthy food and medicine, showed that ginseng had a wide variation in the contents of all 16 ginsenosides and an extensive correlation of their contents, suggesting that they are synthesized through a single or multiple correlated pathways. Furthermore, we pair-wisely examined the relationships between the cultivars and landraces, revealing their relationships in gene expression, gene variation, and ginsenoside biosynthesis. These results provide new knowledge and new genetic and genic resources for advanced research and breeding of ginseng and related species.

14.
BMC Plant Biol ; 23(1): 376, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37525122

ABSTRACT

Panax ginseng is a well-known medicinal plant with several pharmacological uses in China. The trihelix family transcription factors, also known as GT factors, can be involved in the regulation of growth and developmental processes in plants. There have been no in-depth reports or systematic studies about the trihelix transcription factor in ginseng. In this study, the structure, chromosomal localization, gene duplication, phylogeny, functional differentiation, expression patterns and coexpression interactions of trihelix transcripts were analysed using bioinformatics methods based on the ginseng transcriptome database. Thirty-two trihelix transcription factor genes were identified in ginseng, and these genes were alternatively spliced to obtain 218 transcripts. These transcripts were unevenly distributed on different chromosomes of ginseng, and phylogenetic analysis classified the PgGT transcripts into five subgroups. Gene Ontology (GO) analysis classified PgGT transcripts into eight functional subclasses, indicating that they are functionally diverse. The expression pattern analysis of 218 PgGT transcripts revealed that their expression was tissue-specific and spatiotemporally-specific in 14 different tissues of 4-year-old ginseng, 4 different ages of ginseng roots, and 42 farmers' cultivars of 4-year-old ginseng roots. Despite the differences in the expression patterns of these transcripts, coexpression network analysis revealed that these transcripts could be expressed synergistically in ginseng. In addition, two randomly selected PgGT transcripts in each of the five different subfamilies were subjected to methyl jasmonate treatment at different times, and PgGT was able to respond to the regulation of methy1 jasmonate. These results provide a theoretical basis and gene resources for an in-depth study of the function of trihelix genes in other plants.


Subject(s)
Panax , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Panax/genetics , Panax/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling
15.
Huan Jing Ke Xue ; 44(6): 3520-3530, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309968

ABSTRACT

Soil Cd, Hg, Pb, As, Cr, Cu, Zn, and Ni of 12 districts in the Three Gorges Reservoir area (Chongqing section) were analyzed, and different evaluation methods were used to assess the degree of contamination, potential ecological risk, and human health risk of soil heavy metals in paddy soils. The results showed that the average values of all heavy metals except Cr in paddy soils in the Three Gorges Reservoir area exceeded the background values of soils in the Three Gorges Reservoir area, and the contents of Cd, Cu, and Ni in 12.32%, 4.35%, and 2.54% of the soil samples exceeded the screening values, respectively. The variation coefficients of the eight heavy metals were 29.08%-56.43%, which belonged to the medium and above-intensity variation levels and were influenced by anthropogenic activities. The eight heavy metals were contaminated in the soil, and 16.30%, 6.52%, and 2.90% of the soil Cd, Hg, and Pb were heavily contaminated. At the same time, the potential ecological risk of soil Hg and Cd were in the medium risk level on the whole. Wuxi County and Wushan County had relatively high pollution levels among the 12 districts, the Nemerow pollution index showed a moderate pollution level, and the comprehensive potential ecological risks were also at a moderate ecological hazard level. The results of the health risk evaluation showed that hand-mouth intake was the main exposure path of non-carcinogenic risk and carcinogenic risk. Soil heavy metals presented no non-carcinogenic risk for adults (HI<1), but 12.68% of the sites had non-carcinogenic risk for children (HI>1). As and Cr were the main influencing factors for non-carcinogenic and carcinogenic risks in the study area, and their total contributions to non-carcinogenic and carcinogenic risks were more than 75% and 95%, respectively, which was cause for concern.


Subject(s)
Mercury , Metals, Heavy , Adult , Child , Humans , Soil , Cadmium , Lead , Carcinogens
16.
Int Immunopharmacol ; 121: 110559, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364325

ABSTRACT

BACKGROUND: Hypoxia plays a significant role in the pathogenesis of chronic rhinosinusitis (CRS). However, the role and mechanism of hypoxia in the type 2 immune response in eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) remain unclear. METHODS: The expression of hypoxia-inducible factor-1α (HIF-1α) and epithelial-derived cytokines (EDCs), including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), was detected in nasal polyps via immunohistochemical analysis. The relationship between HIF-1α and EDCs was also elucidated using Pearson's correlation. Moreover, primary human nasal epithelial cells (HNECs) and a mouse model of ECRSwNP were employed to elucidate the role and mechanism of hypoxia in type 2 immune responses. RESULTS: HIF-1α, IL-25, IL-33, and TSLP expression levels were upregulated in the non-ECRSwNP and ECRSwNP groups compared with the control group, with the ECRSwNP group having the highest HIF-1α and EDC expression levels. Additionally, HIF-1α was positively correlated with IL-25 and IL-33 in the ECRSwNP group. Meanwhile, treatment with a HIF-1α inhibitor, PX-478, inhibited the hypoxia-induced increase in the mRNA and protein expression of EDCs and type 2 cytokines in HNECs. Similarly, in vivo, PX-478 inhibited EDC expression in the sinonasal mucosa of mice with ECRSwNP. CONCLUSIONS: Hypoxia induces EDC expression by upregulating HIF-1α levels, thereby promoting type 2 immune responses and the development of ECRSwNP. Hence, targeting HIF-1α may represent an effective therapeutic strategy for ECRSwNP.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Animals , Mice , Cytokines/metabolism , Interleukin-33 , Thymic Stromal Lymphopoietin , Hypoxia , Chronic Disease
17.
Mol Immunol ; 159: 1-14, 2023 07.
Article in English | MEDLINE | ID: mdl-37224640

ABSTRACT

PURPOSE: Nitric oxide (NO) is an important messenger molecule widely present in the human body. However, the role of nasal NO (nNO) in eosinophilic chronic rhinosinusitis with nasal polyps (Eos CRSwNP) remain unclear. This study aimed to investigate the diagnostic value and underlying mechanism of nNO in Eos CRSwNP. METHODS: The medical records of 84 non-Eos CRSwNP patients, 55 Eos CRSwNP patients, and 37 control subjects were retrospectively reviewed. The diagnostic value of nNO for Eos CRSwNP was assessed. The expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and tight junctions (TJs) components claudin-1, occludin, and ZO-1 was detected in the nasal polyps. Primary human nasal epithelial cells (HNECs) were co-treated with eNOS inhibitor (L-NAME) or Akt inhibitor (MK-2206), interleukin (IL)-13, and dexamethasone (Dex). The level of NO and the expression of TJs and Akt/eNOS pathways were examined. RESULTS: The nNO levels of the CRSwNP group were significantly lower than those of the control group. Compared with the non-Eos CRSwNP group, the Eos CRSwNP group showed higher nNO level. The combination of nNO level, eosinophilic percentage, and posterior ethmoid score had a better predictive value for Eos CRSwNP (AUC = 0.855). The expression of iNOS, eNOS, and p-eNOS was higher in the CRSwNP groups than in the control group, and p-eNOS expression was higher in the Eos CRSwNP group than in the non-Eos CRSwNP group. The expression of TJs was lower in the Eos CRSwNP group than in the non-Eos CRSwNP and control group. IL-13 decreased TJ expression in HNECs, while Dex promoted Akt and eNOS phosphorylation, NO production and TJ expression. Furthermore, these effects of Dex were inhibited by L-NAME and MK-2206 in HNECs. CONCLUSION: nNO may have a high diagnostic value in Eos CRSwNP, and Akt/eNOS pathway may promote the generation of NO to protect TJs. NO may have a potentially important role in the diagnosis and treatment of Eos CRSwNP.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Nasal Polyps/pathology , Rhinitis/diagnosis , Rhinitis/metabolism , Rhinitis/pathology , Nitric Oxide , Retrospective Studies , NG-Nitroarginine Methyl Ester , Proto-Oncogene Proteins c-akt , Sinusitis/pathology , Nasal Mucosa/metabolism , Chronic Disease , Interleukin-13
18.
Plant Dis ; 107(11): 3362-3369, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37202217

ABSTRACT

Botrytis cinerea is a ubiquitous pathogen that can infect at least 200 dicotyledonous plant species including many agriculturally and economically important crops. In Ginseng, the fungus may cause ginseng gray mold disease, causing great economic losses in the ginseng industry. Therefore, the early detection of B. cinerea in the process of ginseng production is necessary for the disease prevention and control of the pathogen's spread. In this study, a polymerase chain reaction-nucleic acid sensor (PCR-NAS) rapid detection technique was established, and it can be used for field detection of B. cinerea through antipollution design and portable integration. The present study showed that the sensitivity of PCR-NAS technology is 10 times higher than that of traditional PCR-electrophoresis, and there is no need for expensive detection equipment or professional technicians. The detection results of nucleic acid sensors can be read by the naked eye in under 3 min. Meanwhile, the technique has high specificity for the detection of B. cinerea. The testing of 50 field samples showed that the detection results of PCR-NAS were consistent with those of the real-time quantitative PCR (qPCR) method. The PCR-NAS technique established in this study can be used as a novel nucleic acid field detection technique, and it has a potential application in the field detection of B. cinerea to achieve early warning of the pathogen infection.


Subject(s)
Panax , Nucleic Acid Amplification Techniques/methods , Botrytis/genetics , Real-Time Polymerase Chain Reaction
19.
Int Immunopharmacol ; 118: 110054, 2023 May.
Article in English | MEDLINE | ID: mdl-36963262

ABSTRACT

BACKGROUND: Hypoxia is involved in inflammation and immune response; however, its role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) is not fully understood. We aimed to investigate the mechanisms by which hypoxia disrupts the nasal epithelial barrier in CRSwNP. METHODS: The expression of hypoxia-inducible factor-1α (HIF-1α), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and tight junction (TJ) components (claudin-4, occludin, and ZO-1) was detected in nasal polyps using immunohistochemistry, western blotting, and qRT-PCR. Primary human nasal epithelial cells (HNECs), BEAS-2B cells, and an eosinophilic CRSwNP (Eos CRSwNP) mouse model were used to explore the potential mechanisms by which hypoxia disrupts the nasal epithelial barrier. RESULTS: HIF-1α expression in the non-Eos and Eos CRSwNP groups was higher than in the control group, and the expression of PTPN2 and TJs in the non-Eos and Eos CRSwNP groups were lower than those in the control group. Hypoxia decreased the expression of PTPN2 and TJs and increased epithelial cell permeability in HNECs, which was blocked by the HIF-1α inhibitor PX-478. PTPN2 overexpression inhibited hypoxia-induced downregulation of TJ expression in BEAS-2B cells, whereas PTPN2-knockdown aggravated the effects of hypoxia. In the Eos CRSwNP mouse model, both PX-478 and PTPN2 overexpression reduced the formation of nasal polypoid lesions, permeability of the nasal epithelium, and restored TJ expression. CONCLUSIONS: Our data indicate that hypoxia-induced HIF-1α downregulates TJ expression by inhibiting PTPN2, thereby disrupting the nasal epithelial barrier and promoting CRSwNP development. HIF-1α and PTPN2 may be potential targets for the treatment of CRSwNP.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Animals , Mice , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 2/pharmacology , Nasal Mucosa , Epithelial Cells , Hypoxia/pathology , Chronic Disease
20.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834759

ABSTRACT

Ginseng (Panax ginseng C. A. Meyer) is a perennial herb from the genus Panax in the family Araliaceae. It is famous in China and abroad. The biosynthesis of ginsenosides is controlled by structural genes and regulated by transcription factors. GRAS transcription factors are widely found in plants. They can be used as tools to modify plant metabolic pathways by interacting with promoters or regulatory elements of target genes to regulate the expression of target genes, thereby activating the synergistic interaction of multiple genes in metabolic pathways and effectively improving the accumulation of secondary metabolites. However, there are no reports on the involvement of the GRAS gene family in ginsenoside biosynthesis. In this study, the GRAS gene family was located on chromosome 24 pairs in ginseng. Tandem replication and fragment replication also played a key role in the expansion of the GRAS gene family. The PgGRAS68-01 gene closely related to ginsenoside biosynthesis was screened out, and the sequence and expression pattern of the gene were analyzed. The results showed that the expression of PgGRAS68-01 gene was spatio-temporal specific. The full-length sequence of PgGRAS68-01 gene was cloned, and the overexpression vector pBI121-PgGRAS68-01 was constructed. The ginseng seedlings were transformed by Agrobacterium rhifaciens-mediated method. The saponin content in the single root of positive hair root was detected, and the inhibitory role of PgGRAS68-01 in ginsenoside synthesis is reported.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/chemistry , Panax/chemistry , Saponins/chemistry , Metabolic Networks and Pathways , Genes, Plant , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...