Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 402
1.
DNA Cell Biol ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700464

Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH), a type of overgrowth syndrome, is characterized by progressive megalencephaly, cortical brain malformations, and distal limb anomalies. Previous studies have revealed that the overactivity of the phosphatidylinositol 3-kinase-Protein kinase B pathway and the increased cyclin D2 (CCND2) expression were the main factors contributing to this disease. Here, we present the case of a patient who exhibited megalencephaly, polymicrogyria, abnormal neuronal migration, and developmental delay. Serum tandem mass spectrometry and chromosome examination did not detect any metabolic abnormalities or copy number variants. However, whole-exome sequencing and Sanger sequencing revealed a de novo nonsense mutation (NM_001759.3: c.829C>T; p.Gln277X) in the CCND2 gene of the patient. Bioinformatics analysis predicted that this mutation may disrupt the structure and surface charge of the CCND2 protein. This disruption could potentially prevent polyubiquitination of CCND2, leading to its resistance against degradation. Consequently, this could drive cell division and growth by altering the activity of key cell cycle regulatory nodes, ultimately contributing to the development of MPPH. This study not only presents a new case of MPPH and expands the mutation spectrum of CCND2 but also enhances our understanding of the mechanisms connecting CCND2 with overgrowth syndromes.

2.
J Clin Immunol ; 44(5): 117, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758229

AIOLOS, a vital member of the IKAROS protein family, plays a significant role in lymphocyte development and function through DNA binding and protein-protein interactions. Mutations in the IKZF3 gene, which encodes AIOLOS, lead to a rare combined immunodeficiency often linked with infections and malignancy. In this study, we evaluated a 1-year-4-month-old female patient presenting with recurrent infections, diarrhea, and failure to thrive. Laboratory investigations revealed decreased T lymphocyte and immunoglobulin levels. Through whole-exome and Sanger sequencing, we discovered a de novo mutation in IKZF3 (NM_012481; exon 5 c.571G > C, p.Gly191Arg), corresponding to the third DNA-binding zinc finger region of the encoded protein AIOLOS. Notably, the patient with the AIOLOS G191R mutation showed reduced recent thymic emigrants in naïve CD4+T cells compared to healthy counterparts of the same age, while maintaining normal levels of Th1, Th2, Th17, Treg, and Tfh cells. This mutation also resulted in decreased switched memory B cells and lower CD23 and IgM expression. In vitro studies revealed that AIOLOS G191R does not impact the expression of AIOLOS but compromises its stability, DNA binding and pericentromeric targeting. Furthermore, AIOLOS G191R demonstrated a dominant-negative effect over the wild-type protein. This case represents the first reported instance of a mutation in the third DNA-binding zinc finger region of AIOLOS highlighting its pivotal role in immune cell functionality.


Ikaros Transcription Factor , Mutation , Humans , Ikaros Transcription Factor/genetics , Female , Mutation/genetics , Infant , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/diagnosis , Exome Sequencing , B-Lymphocytes/immunology
3.
Acta Pharm Sin B ; 14(5): 2228-2246, 2024 May.
Article En | MEDLINE | ID: mdl-38799646

Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.

4.
Taiwan J Obstet Gynecol ; 63(3): 307-311, 2024 May.
Article En | MEDLINE | ID: mdl-38802192

Trace metals play a vital role in a variety of biological processes, but excessive amounts can be toxic and are receiving increasing attention. Trace metals in the environment are released from natural sources, such as rock weathering, volcanic eruptions, and other human activities, such as industrial emissions, mineral extraction, and vehicle exhaust. Lifestyle, dietary habits and environmental quality are the main sources of human exposure to trace metals, which play an important role in inducing human reproductive infertility. The purpose of this review is to summarize the distribution of various trace metals in oocyte and to identify the trace metals that may cause oocyte used in the design and execution of toxicological studies.


Oocytes , Trace Elements , Humans , Oocytes/drug effects , Trace Elements/analysis , Trace Elements/adverse effects , Female , Environmental Exposure/adverse effects , Metals, Heavy/analysis , Metals/adverse effects , Metals/analysis
5.
Front Endocrinol (Lausanne) ; 15: 1361447, 2024.
Article En | MEDLINE | ID: mdl-38812818

Background: Childhood obesity tends to persist into adulthood, predisposing individuals to cardiometabolic risk (CMR). This study aims to investigate the mediating role of cardiorespiratory fitness (CRF) in the associations between multiple fatness indicators and individual CMR markers and clustered CMR-score, and explore sex differences. Methods: We recruited 1,557 children (age: 8 to 10, male/female: 52.7%/47.3%) in September 2022 in Ningbo, China. Physical examinations, overnight fasting blood test, and CRF was evaluated. The CMR-score was calculated by summing age- and sex-specific z scores of four CMR markers, including mean arterial blood pressure, triglycerides, the total cholesterol to high-density lipoprotein cholesterol ratio, and homeostatic model assessment for insulin resistance. Generalized linear mixed models were used to identify the associations, mediation analyses were performed to dissect the function of CRF. Results: Partial correlation analyses revealed positive associations between high fatness indicators (including body mass index [BMI], BMI z score, body fat mass index [BFMI] and waist-to-height ratio [WHtR]) and increased CMR markers, whereas high CRF was associated with decreased CMR markers (all P < 0.05). In the mediation analyses, CRF emerged as a partial mediator, attenuating the relationship between four fatness indicators and CMR-score. Specifically, CRF mediated 6.5%, 7.7%, 5.3%, and 12.5% of the association between BMI, BMI z score, BFMI, WHtR and CMR-score (all P < 0.001). And the mediating effects of CRF between WHtR and four individual CMR markers was particularly robust, ranging from 10.4% to 21.1% (all P < 0.05). What's more, CRF mediates the associations between WHtR and CMR-score more pronounced in girls than boys with a mediation effect size of 17.3% (P < 0.001). Conclusion: In Chinese children, CRF partially mitigates the adverse effects of fatness on CMR, underscoring the significance of enhancing CRF in children.


Body Mass Index , Cardiometabolic Risk Factors , Cardiorespiratory Fitness , Humans , Male , Female , Child , Cardiorespiratory Fitness/physiology , China/epidemiology , Adiposity/physiology , Pediatric Obesity/epidemiology , Pediatric Obesity/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cross-Sectional Studies , East Asian People
6.
Compr Rev Food Sci Food Saf ; 23(3): e13368, 2024 05.
Article En | MEDLINE | ID: mdl-38720574

Spoilage and deterioration of aquatic products during storage are inevitable, posing significant challenges to their suitability for consumption and the sustainability of the aquatic products supply chain. Research on the nonthermal processing of fruit juices, probiotics, dairy products, and meat has demonstrated positive outcomes in preserving quality. This review examines specific spoilage bacteria species and mechanisms for various aquatic products and discusses the principles, characteristics, and applications of six nonthermal processing methods for bacterial inhibition to maintain microbiological safety and physicochemical quality. The primary spoilage bacteria groups differ among fish, crustaceans, and shellfish based on storage conditions and durations. Four metabolic pathways utilized by spoilage microorganisms-peptides and amino acids, nitrogen compounds, nucleotides, and carbohydrates-are crucial in explaining spoilage. Nonthermal processing techniques, such as ultrahigh pressure, irradiation, magnetic/electric fields, plasma, and ultrasound, can inactivate microorganisms, thereby enhancing microbiological safety, physicochemical quality, and shelf life. Future research may integrate nonthermal processing with other technologies (e.g., modified atmosphere packaging and omics) to elucidate mechanisms of spoilage and improve the storage quality of aquatic products.


Food Handling , Food Microbiology , Animals , Food Handling/methods , Food Preservation/methods , Food Safety/methods , Seafood/microbiology , Seafood/standards , Bacteria , Shellfish/microbiology , Shellfish/standards , Dairy Products/microbiology , Dairy Products/standards , Probiotics , Fishes/microbiology
7.
BMJ Paediatr Open ; 8(1)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627060

BACKGROUND: With the increasing survival rate of smaller newborns and twins, previous growth curves may not accurately assess the growth of extremely preterm infants (EPIs). Our study aimed to establish birth weight percentile curves for singletons and twins in EPIs from China and the USA and compare the differences between them. METHODS: In China, EPIs were from 31 provinces, from 2010 to 2021. The collected information was sex, gestational age, birth weight, singletons and twins. We used the generalised additive models for location scale and shape method to construct the birth weight percentile curves by gestational age and sex for EPIs. The National Vital Statistics System database from 2016 to 2021 was also analysed. We compared the differences between the 50th birth weight percentile curves of the two databases. RESULTS: We identified 8768 neonates in China (5536 singletons and 3232 twins) and 121 933 neonates in the USA (97 329 singletons and 24 604 twins). We established the 3rd, 10th, 25th, 50th, 75th, 90th and 97th birth weight reference curves for China and the USA. The results showed that males had higher birth weights than females. In China, for the same gestational age and sex, birth weights in singletons and twins were found to be similar, though singleton males born in China had slightly higher birth weights than male twins. In the USA, birth weights were also similar for females and males, with the same gestational age in singletons and twins. CONCLUSION: We established birth weight reference percentile curves by gestational age and sex for singletons and twins among EPIs in China and the USA.


Infant, Extremely Premature , Pregnancy, Twin , Female , Humans , Infant, Newborn , Male , Birth Weight , Gestational Age , Twins
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 376-381, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660839

OBJECTIVE: To detect the expression of RNA methyltransferase 14(METTL14) in bone marrow of patients with newly diagnosed acute myeloid leukemia (AML), and to investigate the clinical and prognostic significance of METTL14 expression in newly diagnosed AML. METHODS: Bone marrow samples were collected from 100 patients with newly diagnosed AML as observation group and 60 patients with iron deficiency anemia AML as control group. And collected the clinical data of the AML patients. Real-time quantitative PCR (qRT-PCR) was used to detect the expression level of METTL14 in AML and IDA patients. The relationship between the expression level of METTL14 and clinicopathological features, prognosis was analyzed. Kaplan-Meier curves were used to analyze the effect of METTL14 on overall survival (OS) in AML patients. Cox risk regression model was used to analyze the prognostic factors affecting in patients with AML. RESULTS: Compared with the control group, the expression of METTL14 was significantly increased in AML patients (P < 0.05). Compared with the METTL14 low-expression group, patients in the METTL14 high-expression group had advanced age, high bone marrow cell number, poor efficacyand poor prognosis(P < 0.05). The overall survival time of patients with the METTL14 high-expression group was significantly shorter than that of the low-expression group (P < 0.05). The high expression of METTL14 was an independent risk factor for poor prognosis in AML. CONCLUSION: METTL14 is significantly overexpressed in AML patients, and its correlated with poor clinicopathological features and poor prognosis. It can be used as a prognostic marker and potential therapeutie target for AML patients.


Leukemia, Myeloid, Acute , Methyltransferases , Humans , Leukemia, Myeloid, Acute/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Prognosis , Bone Marrow/metabolism , Male , Female , Clinical Relevance
9.
Antiviral Res ; 226: 105880, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608838

Human respiratory syncytial virus (RSV) is a common cause of respiratory infections in infants, young children, and elderly people. However, there are no effective treatments or vaccines available in most countries. In this study, we explored the anti-RSV potential of 2, 4-Di-tert-butylphenol (2, 4-DTBP), a compound derived from Houttuynia cordata Thunb. To overcome the poor solubility of 2, 4-DTBP, we encapsulated it in polymeric micelles and delivered it by inhalation. We found that 2, 4-DTBP-loaded micelles inhibited RSV infection in vitro and improved survival, lung pathology, and viral clearance in RSV-infected mice. Our results suggested that 2, 4-DTBP-loaded micelle is a promising novel therapeutic agent for RSV infection.


Antiviral Agents , Micelles , Respiratory Syncytial Virus Infections , Animals , Respiratory Syncytial Virus Infections/drug therapy , Mice , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Administration, Inhalation , Phenols/therapeutic use , Phenols/administration & dosage , Phenols/pharmacology , Phenols/chemistry , Lung/virology , Lung/drug effects , Lung/pathology , Disease Models, Animal , Mice, Inbred BALB C , Respiratory Syncytial Virus, Human/drug effects , Female , Houttuynia/chemistry , Cell Line
10.
Proc Natl Acad Sci U S A ; 121(15): e2322127121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568978

Soil moisture (SM) is essential for sustaining services from Earth's critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China's monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth (P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were -8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.

11.
Sci Rep ; 14(1): 6979, 2024 03 24.
Article En | MEDLINE | ID: mdl-38521881

It is metabolic and signaling crosstalk between stromal cells and tumors in the tumor microenvironment, which influences several aspects of tumor formation and drug resistance, including metabolic reprogramming. Despite considerable findings linking lncRNAs in HIF-1-related regulatory networks to cancer cell, little emphasis has been given to the role in communication between cancer-associated fibroblasts (CAFs) and tumor cells. Previously, we observed that NNT-AS1 was substantially expressed in CAFs cells and CAFs exosomes, and subsequently investigated the influence of CAFs exosomal NNT-AS1 on glucose metabolism, proliferation, and metastasis of pancreatic ductal adenocarcinoma (PDAC) cells. Transmission electron microscopy was used to examine exosomes secreted by PDAC patient-derived CAFs. qRT-PCR was used to evaluate the expression of NNT-AS1, miR-889-3p, and HIF-1. The role of CAFs-derived exosomal NNT-AS1 in PDAC cell progression and metabolism have been identified. Dual luciferase reporter assays examined the binding between NNT-AS1, miR-889-3p, and HIF-1. After PDAC cells co-culture exosomes secreted by CAFs, we found that they alter glucose metabolism, proliferation, and metastasis. In PDAC cells, CAF-derived exosomal lncRNA NNT-AS1 acted as a molecular sponge for miR-889-3p. Furthermore, HIF-1 could be targeted by miR-889-3p and was controlled by NNT-AS1. This study explores the mechanism by which NNT-AS1 influences the interaction of CAFs on glycolytic remodeling, proliferation, and metastasis of tumor cells through regulating miR-889-3p/HIF-1α, which also helps discover new clinical treatment targets for PDAC.


Adenocarcinoma , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Exosomes , MicroRNAs , Pancreatic Neoplasms , Humans , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Glucose/metabolism , MicroRNAs/genetics , Pancreatic Neoplasms/pathology , Tumor Microenvironment/genetics , RNA, Antisense/genetics
12.
J Environ Manage ; 356: 120726, 2024 Apr.
Article En | MEDLINE | ID: mdl-38537456

Electrochemical technology is a promising technique for separating ammonia from mature landfill leachate. However, the accompanying migration and transformation of coexisting pollutants and strategies for further high-value resourceful utilization of ammonia have rarely received attention. In this study, an electrochemical separation-Rhodopseudomonas palustris electrolysis cell coupled system was initially constructed for efficient separation and conversion of nitrogen in mature landfill leachate to microbial protein with synchronously tracking the transport and conversion of coexisting heavy metals accompanying the process. The results revealed that ammonia concentration in the cathode increased from 40.3 to 49.8% with increasing the current density from 20 to 40 mA/cm2, with less than 3% of ammonia transformation to NO2--N and NO3--N. During ammonia separation, approximately 95% of HM-DOMs (Cr, Cu, Ni, Pb, and Zn) were released into the anolyte due to humus degradation and further diffused to the cathode. A significant correlation was observed between the releases of HM-DOMs. Cu-DOMs accounted for 70.2% of the total Cu content, which was the highest proportion among the heavy metals (HMs). Among the HMs in anolyte, 57.4% of Pb, 52.5% of Ni, and 50.6% of Zn diffused to the cathode, and most of the HMs were removed in the form of hydroxide precipitations due to heavy alkaline catholyte. Compared with the open-circuit condition, the utilization efficiency of NH4+-N in the R. palustris electrolysis cell increased by 445.1% with 47% and 50% increases in final NH4+-N conversion rate and R. palustris biomass, respectively, due to bio-electrochemical enhanced phototrophic metabolism and acid generation for buffering the strong alkalinity of the electrolyte to maintain suitable growth conditions for R. palustris.


Ammonia , Rhodopseudomonas , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Lead , Electrolysis , Waste Disposal Facilities , Nitrogen
13.
Trials ; 25(1): 196, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38504343

BACKGROUND: The increasing prevalence of childhood obesity has become an urgent public health problem, evidence showed that intervention for childhood obesity bring enormous health benefits. However, an effective individualized intervention strategy remains to be developed, and the accompanying remission of related complications, such as nonalcoholic fatty liver disease (NAFLD), needs to be assessed. This study aimed to develop an m-Health-assisted lifestyle intervention program targeting overweight/obese children and assess its effectiveness on indicators of adiposity and NAFLD. METHODS: This is a cluster-randomized controlled trial that conducted in children with overweight/obesity in Ningbo city, Zhejiang Province, China. Students in Grade 3 (8-10 years old) were recruited from six primary schools, with three be randomized to intervention group and three to usual practice group. The intervention program will last for one academic year and consists of health education, dietary guidance, and physical activity reinforcement. This program is characterized by encouraging four stakeholders, including School, Clinic, famIly, and studENT (SCIENT), to participate in controlling childhood obesity, assisted by m-Health technology. Assessments will be conducted at baseline and 3 months, 9 months, 24 months, and 36 months after baseline. The primary outcome will be the differences between the two groups in students' body mass index and fatty liver index at the end of the intervention (9 months after baseline). During the implementation process, quality control methods will be adopted. DISCUSSION: The program will test the effectiveness of the m-Health-assisted lifestyle intervention on children with obesity and NAFLD. The results of this study will provide evidence for establishing effective lifestyle intervention strategy aimed at childhood obesity and NAFLD and may help develop guidelines for the treatment of obesity and NAFLD in Chinese children. TRIAL REGISTRATION: Clinicaltrials.gov NCT05482191. Registered on July 2022.


Non-alcoholic Fatty Liver Disease , Pediatric Obesity , Child , Humans , Pediatric Obesity/diagnosis , Pediatric Obesity/therapy , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/therapy , Overweight , Life Style , Body Mass Index , Randomized Controlled Trials as Topic
14.
Water Res ; 254: 121388, 2024 May 01.
Article En | MEDLINE | ID: mdl-38430759

The periodate (PI)-based advanced oxidation process is valued for environmental remediation, but current activation methods involve high costs, secondary contamination risks, and limited applicability due to external energy inputs (e.g., UV), catalyst incorporation (e.g., Fe2+), or environmental modifications (e.g., freezing). In this work, novel bioelectric activation of PI using the electrons generated by electroactive bacteria was developed and investigated for rapid removal of carbamazepine (CBZ), achieving 100 %, 100 %, and 76 % removal efficiency for 4.22 µM of CBZ in 20 min at pH 2, 120 min at pH 6.4, and HRT of 30 min at pH 8.5, respectively, with a 1 mM PI dose and without an input voltage. It was deduced that electrons derived from bacteria could directly activate PI using Ti mesh electrodes and generate •IO3 via single electron transfer under strongly acidic conditions (e.g., pH 2). Nevertheless, under weak alkaline conditions (e.g., pH 8.5), biogenic electrons indirectly activated PI by generating OH-via 4e-reduction at the Ti mesh cathode, resulting in the formation of •O2- and 1O2. In addition to the metal cathode, a carbon-based cathode finely modulates the 2e-reduction, yielding H2O2 and activating PI to mainly form •OH. Moreover, primarily non-toxic IO3- was produced during treatment, while no detectable reactive iodine species (HOI, I2, and I3-) were observed. Furthermore, the bioelectric activation of PI demonstrated its capability to remove various micropollutants present in secondary-treated municipal wastewater, showcasing its broad-spectrum degradation ability. This study introduces a novel, cost-effective, and environmentally friendly PI activation technique with promising applicability for micropollutant elimination in water treatment.


Hydrogen Peroxide , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wastewater , Periodic Acid , Oxidation-Reduction , Carbamazepine
15.
Open Med (Wars) ; 19(1): 20240900, 2024.
Article En | MEDLINE | ID: mdl-38463531

This study investigated how Metformin (Met) combined with L-carnitine (L-car) modulates brown adipose tissue (BAT) to affect obesity. High-fat-induced obese rats received daily oral gavage with Met and/or L-car, followed by serum biochemical analysis, histopathological observation on adipose tissues, and immunochemistry test for the abdominal expression of BAT-specific uncoupling protein 1 (UCP1). Mouse-embryonic-fibroblast cells were induced into adipocytes, during which Met plus L-car was added with/without saturated fatty acid (SFA). The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in adipocyte browning was investigated by gene silencing. Mitochondria biogenesis in adipocytes was inspected by Mitotracker staining. Nrf2/heme oxygenase-1 (HO-1)/BAT-related genes/proinflammatory marker expressions in adipose tissues and/or adipocytes were analyzed by Western blot, qRT-PCR, and/or immunofluorescence test. Met or L-car improved metabolic disorders, reduced adipocyte vacuolization and swelling, upregulated levels of BAT-related genes including UCP1 and downregulated proinflammatory marker expressions, and activated the Nrf2/HO-1 pathway in adipose tissues of obese rats. Met and L-car functioned more strongly than alone. In adipocytes, Met plus L-car upregulated BAT-related gene levels and protected against SFA-caused inflammation promotion and mitochondria degeneration, which yet was attenuated by Nrf2 silencing. Met plus L-car enhances BAT activity and white adipose tissue browning via the Nrf2/HO-1 pathway to reduce lipid accumulation and inflammation in obese rats.

16.
BMC Geriatr ; 24(1): 220, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438862

OBJECTIVE: To analyse and discuss the association of gender differences with the risk and incidence of poststroke aphasia (PSA) and its types, and to provide evidence-based guidance for the prevention and treatment of poststroke aphasia in clinical practice. DATA SOURCES: Embase, PubMed, Cochrane Library and Web of Science were searched from January 1, 2002, to December 1, 2023. STUDY SELECTION: Including the total number of strokes, aphasia, the number of different sexes or the number of PSA corresponding to different sex. DATA EXTRACTION: Studies with missing data, aphasia caused by nonstroke and noncompliance with the requirements of literature types were excluded. DATA SYNTHESIS: 36 papers were included, from 19 countries. The analysis of 168,259 patients with stroke and 31,058 patients with PSA showed that the risk of PSA was 1.23 times higher in female than in male (OR = 1.23, 95% CI = 1.19-1.29, P < 0.001), with a prevalence of PSA of 31% in men and 36% in women, and an overall prevalence of 34% (P < 0.001). Analysis of the risk of the different types of aphasia in 1,048 patients with PSA showed a high risk in females for global, broca and Wenicke aphasia, and a high risk in males for anomic, conductive and transcortical aphasia, which was not statistically significant by meta-analysis. The incidence of global aphasia (males vs. females, 29% vs. 32%) and broca aphasia (17% vs 19%) were higher in females, and anomic aphasia (19% vs 14%) was higher in males, which was statistically significant (P < 0.05). CONCLUSIONS: There are gender differences in the incidence and types of PSA. The risk of PSA in female is higher than that in male.


Aphasia , Stroke , Female , Humans , Male , Incidence , Aphasia/diagnosis , Aphasia/epidemiology , Aphasia/etiology , Stroke/complications , Stroke/epidemiology , Patient Compliance
17.
Cell Immunol ; 397-398: 104810, 2024.
Article En | MEDLINE | ID: mdl-38324950

The NLRP3 inflammasome represents a cytoplasmic multiprotein complex with the capability to recognize a wide range of pathogen-derived, environmental, and endogenous stress-related factors. Dysregulated activation of the NLRP3 inflammasome has been implicated in the development of various inflammasome-associated disorders, highlighting its significance as a pivotal target for the treatment of inflammatory diseases. Nonetheless, despite its clinical importance, there is currently a lack of specific drugs available for directly targeting the NLRP3 inflammasome. Several strategies have been explored to target different facets of the NLRP3 inflammasome, with interventions aimed at directly inhibiting NLRP3 demonstrating the most promising efficacy and safety profiles. In this review, we provide a summary of direct inhibitors targeting NLRP3, elucidating their inhibitory mechanisms, clinical trial phases, and potential applications. Through this discussion, we aim to shed light on the implications of NLRP3 inhibition for the treatment of inflammatory diseases.


Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein
18.
Cancer Lett ; 587: 216733, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38360141

Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Pancreatic Neoplasms/genetics , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Carcinoma, Pancreatic Ductal/genetics , RNA-Binding Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 121(10): e2320559121, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38408237

Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.


Carcinoma, Squamous Cell , Signal Transduction , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Homeostasis , Signal Transduction/genetics , Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , YAP-Signaling Proteins
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 112-119, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38387908

OBJECTIVE: To analyze the expression of MCP-1 and CCR2 in newly diagnosed diffuse large B-cell lymphoma (DLBCL), and to evaluate their correlation with clinicopathological features and prognosis. METHODS: A total of 141 patients with DLBCL diagnosed and treated in the Department of Hematology, the First Affiliated Hospital of Bengbu Medical College from January 2017 to May 2022 were retrospectively collected. The clinical characteristics, pathological data and prognostic factors of the patients were collected. Immunohistochemical staining was used to detect the expression of MCP-1 and CCR2 in the tissues of newly treated DLBCL patients, and to analyze the relationship between MCP-1 and clinical characteristics, prognosis and survival of patients. RESULTS: The expression of MCP-1 and CCR2 were correlated with Ann Arbor stage, IPI score, lactate dehydrogenase (LDH), Ki-67 index and therapeutic effect. There were no significant correlation between the expression of MCP-1 or CCR2 and other clinical histopathological parameters such as gender, age, ß2-microglobulin, BCL-2, BCL-6, Hans classification, initial location, B symptoms, bone marrow involvement. There was a statistical difference in OS and PFS between the MCP-1 or CCR2 positive group and the negative group, which was associated to poor prognosis.Univariate Cox regression analysis showed that ß2-microglobulin, Ki-67 index, IPI score, MCP-1, CCR2 expression levels and disease remission affected the PFS and OS of DLBCL patients (P < 0.05). Gender, age, LDH, BCL-2, BCL-6, Hans classification, primary tumor site, B symptoms, bone marrow involvement, Ann Arbor stage had no effect on PFS and OS (P >0.05). Multivariate analysis showed that ß2-microglobulin, Ki-67 index, IPI score, MCP-1, CCR2 expression levels and disease remission were independent influencing factors of patients (P < 0.05). CONCLUSION: The expression rate of MCP-1 or CCR2 in newly treated DLBCL is high, and it is correlated with the clinical features of poor prognosis such as stage and LDH of DLBCL patients, which is a poor prognostic factor affecting PFS and OS.


Clinical Relevance , Lymphoma, Large B-Cell, Diffuse , Humans , Ki-67 Antigen , L-Lactate Dehydrogenase , Lymphoma, Large B-Cell, Diffuse/pathology , Prognosis , Proto-Oncogene Proteins c-bcl-2 , Receptors, CCR2 , Retrospective Studies
...