Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.705
Filter
1.
Eur J Obstet Gynecol Reprod Biol ; 300: 35-40, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38986270

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of neonatal mortality worldwide, and dyslipidemia is associated with preterm birth in observational studies. We use Mendelian randomization (MR) analyses to uncover the causal association between blood lipid levels and preterm birth. METHODS: We extracted uncorrelated (R2 < 0.001) single-nucleotide polymorphisms strongly associated (p < 5 × 10-8) with blood lipids from genome wide association studies of FinnGen database and UK Biobank participants. Inverse variance weighted method was the main MR analysis. Sensitivity analyses including genetic pleiotropy, heterogeneity, and directionality of causality were conducted. RESULTS: The study included 115,082 participants with lipid measurements, 8,507 patients with preterm birth. Increasing apolipoprotein B (odds ratio (OR), 1.12[95 % CI, 1.02-1.23]; p = 0.019), low-density lipoprotein cholesterol (OR, 1.11[95 % CI, 1.00-1.22]; p = 0.040), non-high-density lipoprotein cholesterol (OR, 1.12[95 % CI, 1.01-1.24]; p = 0.026), remnant cholesterol (OR, 1.11[95 % CI, 1.00-1.23]; p = 0.047) and total free cholesterol (OR, 1.11[95 % CI, 1.01-1.23]; p = 0.037) were associated with increased risk of preterm delivery. Moreover, triglycerides in low-density lipoprotein were causally associated with the risk of PTB. Our sensitivity analysis yielded robust results, uncovering no evidence of horizontal pleiotropy or reverse causal relationships. CONCLUSION: Our investigation unveils the adverse impact of dyslipidemia on preterm birth, with a particular emphasis on the detrimental effect of elevated low-density lipoprotein cholesterol.

2.
J Food Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992868

ABSTRACT

Lycium ruthenicum Murray (LR) is a medicine and edible plant in Northwest China, and L. ruthenicum Murray anthocyanins (LRA) are green antioxidants with various pharmacological activities, such as antioxidant and anti-inflammatory activities. However, the protective effect and mechanism of LRA against retinal damage induced by blue light exposure are poorly understood. This study explored the protective effects and potential mechanisms of LRA on retinal damage induced by blue light exposure in vitro and in vivo. The results showed that LRA could ameliorate oxidative stress injury by activating the antioxidant stress nuclear factor-related factor 2 pathway, promoting the expression of phase II detoxification enzymes (HO-1, NQO1) and endogenous antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and reducing reactive oxygen species and malondialdehyde levels. Additionally, LRA could inhibit inflammatory response by decreasing the expression of blue light exposure-induced nuclear factor-κB (NF-κB) pathway-related proteins (NF-κB and p-IκBα), as well as interleukin (IL)-6, tumor necrosis factor-α, IL-1ß pro-inflammatory factors and pro-inflammatory chemokine VEGF, and increasing the expression of anti-inflammatory factor IL-10. Furthermore, LRA could ameliorate oxidative stress-induced apoptosis by upregulating Bcl-2 and downregulating Bax and Caspase-3 protein expression. All these results indicate that LRA can be used as an antioxidant dietary supplement for the treatment or prevention of retinal diseases.

4.
Angew Chem Int Ed Engl ; : e202410900, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010737

ABSTRACT

MnO2 is commonly used as the cathode material for aqueous zinc-ion batteries (AZIBs). The strong Coulombic interaction between Zn ions and the MnO2 lattice causes significant lattice distortion and, combined with the Jahn-Teller effect, results in Mn2+ dissolution and structural collapse. While proton intercalation can reduce lattice distortion, it changes the electrolyte pH, producing chemically inert byproducts. These issues greatly affect the reversibility of Zn2+ intercalation/extraction, leading to significant capacity degradation of MnO2. Herein, we propose a novel method to enhance the cycling stability of δ-MnO2 through selenium doping (Se-MnO2). Our work indicates that varying the selenium doping content can regulate the intercalation ratio of H+ in MnO2, thereby suppressing the formation of ZnMn2O4 by-products. Se doping mitigates the lattice strain of MnO2 during Zn2+ intercalation/deintercalation by reducing Mn-O octahedral distortion, modifying Mn-O bond length upon Zn2+ insertion, and alleviating Mn dissolution caused by the Jahn-Teller effect. The optimized Se-MnO2 (Se concentration of 0.8 at.%) deposited on carbon nanotube demonstrates a notable capacity of 386 mAh g-1 at 0.1 A g-1, with exceptional long-term cycle stability, retaining 102 mAh g-1 capacity after 5000 cycles at 3.0 A g-1.

5.
Front Endocrinol (Lausanne) ; 15: 1368046, 2024.
Article in English | MEDLINE | ID: mdl-39010897

ABSTRACT

Introduction: Pathogens causing diabetic foot infections (DFIs) vary by region globally; however, knowledge of the causative organism is essential for effective empirical treatment. We aimed to determine the incidence and antibiotic susceptibility of DFI pathogens worldwide, focusing on Asia and China. Methods: Through a comprehensive literature search, we identified published studies on organisms isolated from DFI wounds from January 2000 to December 2020. Results: Based on our inclusion criteria, we analyzed 245 studies that cumulatively reported 38,744 patients and 41,427 isolated microorganisms. DFI pathogens varied according to time and region. Over time, the incidence of Gram-positive and Gram-negative aerobic bacteria have decreased and increased, respectively. America and Asia have the highest (62.74%) and lowest (44.82%) incidence of Gram-negative bacteria, respectively. Africa has the highest incidence (26.90%) of methicillin-resistant Staphylococcus aureus. Asia has the highest incidence (49.36%) of Gram-negative aerobic bacteria with species infection rates as follows: Escherichia coli, 10.77%; Enterobacter spp., 3.95%; and Pseudomonas aeruginosa, 11.08%, with higher local rates in China and Southeast Asia. Linezolid, vancomycin, and teicoplanin were the most active agents against Gram-positive aerobes, while imipenem and cefoperazone-sulbactam were the most active agents against Gram-negative aerobes. Discussion: This systematic review showed that over 20 years, the pathogens causing DFIs varied considerably over time and region. This data may inform local clinical guidelines on empirical antibiotic therapy for DFI in China and globally. Regular large-scale epidemiological studies are necessary to identify trends in DFI pathogenic bacteria. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023447645.


Subject(s)
Anti-Bacterial Agents , Diabetic Foot , Humans , Diabetic Foot/microbiology , Diabetic Foot/epidemiology , China/epidemiology , Anti-Bacterial Agents/therapeutic use , Incidence , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy
6.
Front Chem ; 12: 1427670, 2024.
Article in English | MEDLINE | ID: mdl-39010937

ABSTRACT

Introduction: Tripterygium species have been traditionally used in Chinese medicine for treating various conditions. The aim of the study was to construct a drug-modified renal infarction targeting liposome (rTor-LIP) containing Tripterygium in order to improve the therapeutic effect on renal injury. Methods: rTor-LIP was prepared using the extruder method containing Tripterygium solution. The preparation was characterized by transmission electron microscopy, Marvin laser particle size analyzer, and Western blotting. In vitro experiments were conducted to verify the biocompatibility of rTor-LIP, and in vivo experiments were conducted to verify the therapeutic effect of rTor- LIP on renal injury. Results and discussion: The surface of rTor-LIP was regular and oval. In vitro results showed that after co-incubation with rTor-LIP, endothelial cells did not show significant apoptosis, and there were no significant abnormalities in the mitochondrial metabolism. The in vivo results showed that the morphology of endothelial cells in the rTor-LIP group was uniform and the cytoplasmic striations were clear, but the local striations had disappeared. Thus, rTor-LIP nano-targeted liposomes can effectively target hypoxic kidney tissue, providing a new idea for the treatment of renal infarction.

7.
Cell ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971151

ABSTRACT

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.

8.
Sensors (Basel) ; 24(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39001052

ABSTRACT

With the continuous advancement of the economy and technology, the number of cars continues to increase, and the traffic congestion problem on some key roads is becoming increasingly serious. This paper proposes a new vehicle information feature map (VIFM) method and a multi-branch convolutional neural network (MBCNN) model and applies it to the problem of traffic congestion detection based on camera image data. The aim of this study is to build a deep learning model with traffic images as input and congestion detection results as output. It aims to provide a new method for automatic detection of traffic congestion. The deep learning-based method in this article can effectively utilize the existing massive camera network in the transportation system without requiring too much investment in hardware. This study first uses an object detection model to identify vehicles in images. Then, a method for extracting a VIFM is proposed. Finally, a traffic congestion detection model based on MBCNN is constructed. This paper verifies the application effect of this method in the Chinese City Traffic Image Database (CCTRIB). Compared to other convolutional neural networks, other deep learning models, and baseline models, the method proposed in this paper yields superior results. The method in this article obtained an F1 score of 98.61% and an accuracy of 98.62%. Experimental results show that this method effectively solves the problem of traffic congestion detection and provides a powerful tool for traffic management.

9.
Exp Aging Res ; : 1-10, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003729

ABSTRACT

OBJECTIVE: This study aimed to analyze the effect and potential mechanism of cognitive intervention and rehabilitation training in elderly patients with diabetes mellitus complicated with mild cognitive impairment. METHODS: In this study, 128 elderly patients with diabetes mellitus complicated with mild cognitive impairment were randomly divided into the control group and the training group. The effects of the two groups were compared before and after the cognitive intervention. The expression of miR-134-5p was assessed by qRT-PCR. The relationships between miR-134-5p and Mini-Mental State Examination Scale and Montreal Cognitive Assessment Scale were evaluated. RESULTS: After 3-month management, the Mini-Mental State Examination Scale, Montreal Cognitive Assessment Scale, the Chinese version of the diabetes self-efficacy rating scale, and WHO quality of life brief were improved in both control group and training group, and the training group showed better improvement. Cognitive intervention and rehabilitation training restricted the expression of miR-134-5p. The levels of miR-134-5p were pertinent to cognitive function. CONCLUSION: Cognitive intervention and rehabilitation training might prevent the development of diabetes mellitus complicated with mild cognitive impairment by inhibiting miR-134-5p.

10.
Food Chem ; 459: 140380, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39003862

ABSTRACT

As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.

11.
Cell Signal ; : 111300, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004327

ABSTRACT

BACKGROUND: Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS: We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS: The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS: This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.

12.
Angew Chem Int Ed Engl ; : e202409179, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004946

ABSTRACT

Crystalline red phosphorus(CRP), known for its promising photocatalytic properties, faces challenges in photocatalytic hydrogen evolution(PHE) due to undesired inherent charge deep trapping and recombination effects induced by defects. This study overcomes these limitations through an innovative strategy in integrating ruthenium single atoms(Ru1) within CRP to simultaneously repair the intrinsic undesired vacancy defects and serve as the uniformly distributed anchoring sites for a controllable growth into ruthenium nanoparticles(RuNP). Hence, a highly functionalized CRP with Ru1 and RuNP(Ru1-NP/CRP) with concerted effects in regulating electronic structures and promoting interfacial charge transfer has been achieved. Advanced characterizations unveil the pioneering dual role of pre-anchored Ru1 in transforming CRP photocatalysis. The regulations of vacancy defects on the surface of CRP minimize the detrimental deep charge trapping, resulting in the prolonged lifetime of charges. With the well-distributed in-situ growth of RuNP on Ru1 sites, the constructed robust "bridge" that connects CRP and RuNP facilitates constructive interfacial charge transfer. Ultimately, the synergistic effect induced by the pre-anchored Ru1 endows Ru1-NP/CRP with an exceptional PHE rate of 3175µmolh-1g-1, positioning it as one of the most efficient elemental-based photocatalysts. This breakthrough underscores the crucial role of pre-anchoring metal single atoms at defect sites of catalysts in enhancing hydrogen production.

13.
J Nerv Ment Dis ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008889

ABSTRACT

ABSTRACT: COVID-19 survivors complained of the experience of cognitive impairments, which also called "brain fog" even recovered. The study aimed to describe long-term cognitive change and determine psychosocial factors in COVID-19 survivors. A cross-sectional study was recruited 285 participants from February 2020 to April 2020 in 17 hospitals in Sichuan Province. Cognitive function, variables indicative of the virus infection itself, and psychosocial variables were collected by telephone interview. Univariate logistic regression and Lasso logistic regression models were used for variable selection which plugged into a multiple logistics model. Overall prevalence of moderate or severe cognitive impairment was 6.3%. Logistic regression showed that sex, religion, smoking status, occupation, self-perceived severity of illness, sleep quality, perceived mental distress after COVID-19, perceived discrimination from relatives and friends, and suffered abuse were associated with cognitive impairment. The long-term consequences of cognitive function are related to multiple domains, in which psychosocial factors should be taken into consideration.

14.
Sci Total Environ ; : 174677, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009169

ABSTRACT

The co-occurrence of metal (loid)s in realistic aquatic environments necessitates the evaluation of their combined effects. However, the generality of the additive effect hypothesis is contentious, particularly due to metal(loid)-metal(loid) interactions. The absence of systematic evaluation approaches restricts our ability to draw overall conclusions and make reliable predictions. In this study, we reviewed 1473 effect sizes from 38 publications, and classified all responses into seven main categories (from molecular to individual levels) according to their toxicological significance. Our meta-analysis revealed that metal(loid) mixtures had significant effects on aquatic organisms (33 %, 95 % CI 28 %-39 %, P < 0.05), along with significant response heterogeneity (Qt = 690,319.62, P < 0.0001; I2 = 99.95 %). Concurrently, we developed a Random Forest machine learning model to predict adverse effects and identify key variables. These two methods demonstrated that the toxicity of metal(loid) mixtures is primarily linked to the choice of toxicity endpoints, and the characteristics of metal(loid) mixtures. Our findings underscore the potential of combining meta-analysis with machine learning, a more systematic approach, to enhance the understanding and prediction of the adverse effects of metal(loid) mixtures, and they offer guidance for risk assessment and policy-making in complex environmental scenarios.

16.
Angew Chem Int Ed Engl ; : e202409432, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946171

ABSTRACT

Host-guest chemistry, a pivotal branch of supramolecular chemistry, plays an essential role in understanding and constructing complex structures through non-covalent interactions. Organic molecular cages, characterized by their intrinsic confined cavities, can selectively bind a variety of guest molecules. Their host-guest chemistry has been well studied in the solution phase, and several attempts have been made to encode well-defined molecular architectures into solid-state polymeric materials. However, only limited studies have explored their potential in the solid state, where their lack of robustness and less ordered networks significantly hinder practical applications. Herein, we report the synthesis of a single-crystal cage framework and a systematic study of its host-guest chemistry, spanning from the solution state to the solid state. Our studies reveal that the host-guest interactions inherent to the cage are successfully maintained in the solid-state polymeric material. Furthermore, the framework's robustness allows for the guest molecules (fullerene) to be released triggered by an organic acid (trifluoracetic acid), with subsequent regeneration of the framework through an organic base (triethylamine) treatment. Our findings represent the first synthesis of a robust, single-crystal cage framework exhibiting highly selective and reversible host-guest chemistry, thus showing great potential towards molecular separation application.

17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 803-806, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946361

ABSTRACT

OBJECTIVE: To explore the application of an automatic slide-dropping instrument in bone marrow chromosomal karyotyping. METHODS: The effects of manual and automatic dropping methods under different environmental humidity were retrospectively analyzed, and the repeatability of the automatic dropping method was analyzed. RESULTS: No statistical difference was found between the results of automatic and manual dropping methods under the optimum ambient humidity and high humidity (P > 0.05). At low humidity, there was a statistical difference between the two methods (P < 0.05). With regard to the repeatability, the coefficient of variations of the automatic dropping method for the number of split phases, the rate of good dispersion and the rate of overlap were all lower than those of the manual dropping method. A statistical difference was also found in the number of split phases (P < 0.05) but not in the discrete excellent rate and overlapping rate between the two methods (P > 0.05). CONCLUSION: Better effect can be obtained by the automatic dropping instrument. It is suggested to gradually replace manual work with machine.


Subject(s)
Karyotyping , Humans , Karyotyping/methods , Adult , Female , Male , Bone Marrow , Middle Aged , Retrospective Studies , Young Adult , Adolescent , Humidity , Automation , Child , Aged , Child, Preschool
18.
Front Endocrinol (Lausanne) ; 15: 1405665, 2024.
Article in English | MEDLINE | ID: mdl-38948524

ABSTRACT

Background: Increased levels of serum Klotho have been associated with a reduced risk of several cardiovascular diseases (CVD). However, limited studies exist on the association between serum Klotho and mortality in patients with CVD. Methods: We collected data from CVD patients in the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2016. We linked NHANES data with the National Death Index to determine the survival status of participants. Univariate and multivariable Cox regression models were used to investigate the relationship between serum Klotho levels and mortality in CVD patients. The relationship between serum Klotho quartiles and mortality in CVD patients was visualized using Kaplan-Meier (KM) curves and restricted cubic spine. Finally, subgroup analyses were used to examine the association between serum Klotho and all-cause mortality in different populations. Results: 1905 patients with CVD were finally enrolled in our study with a mean follow-up of 7.1 years. The average age of the participants was 63.4 years, with 58.40% being male. KM showed that lower Klotho levels were associated with lower survival rates. After adjusting for potential confounders, patients with higher serum Klotho levels had lower all-cause mortality (Q1: 1.00, Q2: 0.58 (0.42-0.80), Q3: 0.69 (0.47-1.01), and Q4:0.64 (0.45-0.92). However, the relationship between serum Klotho levels and cardiovascular mortality was not statistically significant. Dose-response analysis shows a U-shaped relationship between serum Klotho levels and all-cause mortality in patients with CVD (P nonlinear=0.002). Subgroup analysis indicated that participants with a history of hypertension had a higher risk of all-cause mortality in serum Klotho Q4 compared to Q1 (P trend <0.05). Conclusion: The relationship between serum Klotho levels and all-cause mortality in CVD patients exhibits a U-shaped association. The underlying mechanisms of this association need further investigation.


Subject(s)
Cardiovascular Diseases , Klotho Proteins , Nutrition Surveys , Humans , Male , Female , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Middle Aged , Prospective Studies , Aged , United States/epidemiology , Glucuronidase/blood , Biomarkers/blood , Cause of Death , Follow-Up Studies , Survival Rate
19.
Ann Intern Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38950397

ABSTRACT

BACKGROUND: Acupuncture may improve degenerative lumbar spinal stenosis (DLSS), but evidence is insufficient. OBJECTIVE: To investigate the effect of acupuncture for DLSS. DESIGN: Multicenter randomized clinical trial. (ClinicalTrials.gov: NCT03784729). SETTING: 5 hospitals in China. PARTICIPANTS: Patients with DLSS and predominantly neurogenic claudication pain symptoms. INTERVENTION: 18 sessions of acupuncture or sham acupuncture (SA) over 6 weeks, with 24-week follow-up after treatment. MEASUREMENTS: The primary outcome was change from baseline in the modified Roland-Morris Disability Questionnaire ([RMDQ] score range, 0 to 24; minimal clinically important difference [MCID], 2 to 3). Secondary outcomes were the proportion of participants achieving minimal (30% reduction from baseline) and substantial (50% reduction from baseline) clinically meaningful improvement per the modified RMDQ. RESULTS: A total of 196 participants (98 in each group) were enrolled. The mean modified RMDQ score was 12.6 (95% CI, 11.8 to 13.4) in the acupuncture group and 12.7 (CI, 12.0 to 13.3) in the SA group at baseline, and decreased to 8.1 (CI, 7.1 to 9.1) and 9.5 (CI, 8.6 to 10.4) at 6 weeks, with an adjusted difference in mean change of -1.3 (CI, -2.6 to -0.03; P = 0.044), indicating a 43.3% greater improvement compared with SA. The between-group difference in the proportion of participants achieving minimal and substantial clinically meaningful improvement was 16.0% (CI, 1.6% to 30.4%) and 12.6% (CI, -1.0% to 26.2%) at 6 weeks. Three cases of treatment-related adverse events were reported in the acupuncture group, and 3 were reported in the SA group. All events were mild and transient. LIMITATION: The SA could produce physiologic effects. CONCLUSION: Acupuncture may relieve pain-specific disability among patients with DLSS and predominantly neurogenic claudication pain symptoms, although the difference with SA did not reach MCID. The effects may last 24 weeks after 6-week treatment. PRIMARY FUNDING SOURCE: 2019 National Administration of Traditional Chinese Medicine "Project of building evidence-based practice capacity for TCM-Project BEBPC-TCM" (NO. 2019XZZX-ZJ).

20.
Heliyon ; 10(11): e31775, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947426

ABSTRACT

Diabetic nephropathy (DN) has emerged as the foremost cause of end-stage renal disease (ESRD) globally. Endoplasmic reticulum (ER) stress plays a critical role in DN progression. Triterpenoid saponin from Aralia taibaiensis (sAT) has been reported to possess anti-diabetic and anti-oxidant effects. The aim of this study was to examine the influence of sAT on DN treatment and elucidate potential underlying mechanisms. A high-fat diet (HFD) and Streptozotocin (STZ) were employed to induce DN in male Sprague Dawley (SD) rats which were subsequently treated with varying concentrations of sAT for 8 weeks. Our findings reveal that different doses of sAT significantly mitigated hyperglycemia, reduced urinary albumin excretion, and decreased plasma creatinine and blood urea nitrogen levels in DN rats. Moreover, sAT administration improved body weight, alleviated renal fibrosis and histopathological changes in the diabetic kidneys. Notably, sAT treatment partially restored increased Bax expression and decreased Bcl-2 expression. Additionally, sAT inhibited ER stress-related proteins, including GRP78, p-PERK, ATF4 and CHOP in kidneys of DN rats. These results suggest that sAT ameliorated experimental diabetic nephropathy, at least in part, through ER stress pathway. These findings provide a scientific basis for the potential development of sAT as a therapeutic agent for DN treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...