Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.011
Filter
1.
Heliyon ; 10(13): e34214, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091943

ABSTRACT

Purpose: This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods: This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results: Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion: The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.

2.
JHEP Rep ; 6(8): 101101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091991

ABSTRACT

Background & Aims: Persistent cholestasis has been associated with poor prognosis after orthotopic liver transplantation. In this study, we aimed to investigate how the accumulation of tauro-beta-muricholic acid (TßMCA), resulting from the reprogramming of bile acid (BA) metabolism during liver ischemia/reperfusion (IR) stress, attenuates liver inflammation. Methods: Ingenuity Pathway Analysis was performed using transcriptome data from a murine hepatic IR model. Three different models of hepatic IR (liver warm IR, bile duct separation-IR, common bile duct ligation-IR) were employed. We generated adeno-associated virus-transfected mice and CD11b-DTR mice to assess the role of BAs in regulating the myeloid S1PR2-GSDMD axis. Hepatic BA levels were analyzed using targeted metabolomics. Finally, the correlation between the reprogramming of BA metabolism and hepatic S1PR2 levels was validated through RNA-seq of human liver transplant biopsies. Results: We found that BA metabolism underwent reprogramming in murine hepatocytes under IR stress, leading to increased synthesis of TßMCA, catalyzed by the enzyme CYP2C70. The levels of hepatic TßMCA were negatively correlated with the severity of hepatic inflammation, as indicated by the serum IL-1ß levels. Inhibition of hepatic CYP2C70 resulted in reduced TßMCA production, which subsequently increased serum IL-1ß levels and exacerbated IR injury. Moreover, our findings suggested that TßMCA could inhibit canonical inflammasome activation in macrophages and attenuate inflammatory responses in a myeloid-specific S1PR2-GSDMD-dependent manner. Additionally, Gly-ßMCA, a derivative of TßMCA, could effectively attenuate inflammatory injury in vivo and inhibit human macrophage pyroptosis in vitro. Conclusions: IR stress orchestrates hepatic BA metabolism to generate TßMCA, which attenuates hepatic inflammatory injury by inhibiting the myeloid S1PR2-GSDMD axis. Bile acids have immunomodulatory functions in liver reperfusion injury that may guide therapeutic strategies. Impact and implications: Our research reveals that liver ischemia-reperfusion stress triggers reprogramming of bile acid metabolism. This functions as an adaptive mechanism to mitigate inflammatory injury by regulating the S1PR2-GSDMD axis, thereby controlling the release of IL-1ß from macrophages. Our results highlight the crucial role of bile acids in regulating hepatocyte-immune cell crosstalk, which demonstrates an immunomodulatory function in liver reperfusion injury that may guide therapeutic strategies targeting bile acids and their receptors.

3.
Int J Biol Macromol ; 275(Pt 2): 133601, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969031

ABSTRACT

Fatigue is a common physiological state that affects normal human activities. Prolonged fatigue induces a variety of diseases and seriously affects human health, so it is imperative to discover nutritional dietary supplements and treatments without side effects, among which natural anti-fatigue polysaccharides have shown great potential. Polysaccharides, a class of biomolecules produced by a variety of organisms such as plants, animals, bacteria and algae, have attracted much attention in recent years due to their anti-fatigue activity and fewer side effects. This review summarizes the classification, dosage and experimental models of polysaccharides with anti-fatigue activity obtained from different natural sources. We also review the fatigue-relieving effects of these polysaccharides through mechanisms such as modulating oxidative damage, regulating energy metabolism and influencing intestinal flora, as well as the effects of molecular weights, monosaccharide compositions, structural features and chemical modifications of the polysaccharides on their anti-fatigue activities to support their potential application value in functional foods and pharmaceuticals. New valuable insights for future research on natural polysaccharides are also presented in the field of natural production of bio-based functional materials, functional foods and therapeutic agents.

4.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998982

ABSTRACT

In this research, the authors studied the synthesis of a silicon-based quaternary ammonium material based on the coupling agent chloromethyl trimethoxysilane (KH-150) as well as its adsorption and separation properties for Th(IV). Using FTIR and NMR methods, the silicon-based materials before and after grafting were characterized to determine the spatial structure of functional groups in the silicon-based quaternary ammonium material SG-CTSQ. Based on this, the functional group grafting amount (0.537 mmol·g-1) and quaternization rate (83.6%) of the material were accurately calculated using TGA weight loss and XPS. In the adsorption experiment, the four materials with different grafting amounts showed different degrees of variation in their adsorption of Th(IV) with changes in HNO3 concentration and NO3- concentration but all exhibited a tendency toward anion exchange. The thermodynamic and kinetic experimental results demonstrated that materials with low grafting amounts (SG-CTSQ1 and SG-CTSQ2) tended to physical adsorption of Th(IV), while the other two tended toward chemical adsorption. The adsorption mechanism experiment further proved that the functional groups achieve the adsorption of Th(IV) through an anion-exchange reaction. Chromatographic column separation experiments showed that SG-CTSQ has a good performance in U-Th separation, with a decontamination factor for uranium in Th(IV) of up to 385.1, and a uranium removal rate that can reach 99.75%.

5.
Drug Des Devel Ther ; 18: 3089-3112, 2024.
Article in English | MEDLINE | ID: mdl-39050804

ABSTRACT

Purpose: Yinhua Gout Granules (YGG) is a traditional Chinese medicine preparation with a variety of pharmacological effects, and its clinical efficacy in the treatment of gouty arthritis (GA) has been fully confirmed. However, the pharmacodynamic basis of YGG and its anti-inflammatory mechanism of action in GA are unknown. The objective of this study was to identify the active components and molecular mechanisms of YGG in the treatment of GA. Methods: Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) and network pharmacology were used to identify and predict the potential active ingredients and related signaling pathways. Then, we revealed the anti-GA effects of YGG based on pharmacodynamic experiments in GA rats. Finally, we integrated transcriptomics and network pharmacology to elucidate the potential mechanism of action and verified the putative mechanism by molecular docking, immunohistochemical (IHC) and Western blot. Results: We have identified 10 major active components of YGG that may have anti-GA effects, such as ferulic acid, rutin, luteolin, etc. Using molecular docking, we found that 10 major compounds could bind well to TNF, PTGS2, IL-6, IL1ß, NOS2 and PTGS1, and the binding energies were all less than -5 kcal/mol. Animal studies have shown that YGG can improve joint inflammation and inflammatory cell infiltration, reduce serum UA, BUN and Cr levels (p<0.01), and decrease IL-1ß, IL-6, TNF-α, COX-2 and PGE2 levels in synovial tissue (p<0.01), which are associated with the pathogenesis of GA. IHC and Western blot results showed that YGG could regulate TLR4/MYD88/NF-κB pathway to inhibit the inflammatory response induced by GA. Conclusion: This study found that YGG could not only improve the disease of GA by inhibiting the production of UA in the body, but also target the regulation of TLR4/MYD88/NF-κB signaling pathway through a variety of active components to achieve effective therapeutic effects on GA.


Subject(s)
Arthritis, Gouty , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Rats , Male , Transcriptome/drug effects , Molecular Docking Simulation , Medicine, Chinese Traditional , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Chromatography, High Pressure Liquid
6.
Int J Nanomedicine ; 19: 7273-7305, 2024.
Article in English | MEDLINE | ID: mdl-39050871

ABSTRACT

Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.


Subject(s)
Amphibian Venoms , Bufanolides , Skin , Animals , Amphibian Venoms/chemistry , Amphibian Venoms/pharmacology , Amphibian Venoms/pharmacokinetics , Humans , Skin/drug effects , Skin/chemistry , Bufanolides/chemistry , Bufanolides/pharmacology , Bufanolides/pharmacokinetics , Bufanolides/administration & dosage , Drug Delivery Systems/methods , Bufo bufo , Bufonidae , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Neoplasms/drug therapy , Biological Availability
7.
J Clin Pathol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048306

ABSTRACT

AIMS: Specific identification of a hydatidiform mole (HM) and subclassification of a complete hydatidiform mole (CHM) or partial hydatidiform mole (PHM) are critical. This study aimed to reappraise the diagnostic performance of ultrasonography and histology with a refined diagnosis. METHODS: This was a retrospective, multicentre cohort study of 821 patients with histologically suspected HM specimens. Refined diagnostic algorithms with p57 immunohistochemistry and short tandem repeat (STR) genotyping were performed and used as the true standard for assessing the diagnostic performance of the original ultrasonography and morphology methods. The diagnostic performance was calculated using accuracy, agreement rate, sensitivity and the positive predictive value (PPV) compared with refined diagnostic results. RESULTS: Of the 821 histologically suspected HM cases included, 788 (95.98%) were successfully reclassified into 448 CHMs, 213 PHMs and 127 non-molar (NM) abortuses. Ultrasonography showed an overall accuracy of 44.38%, with a sensitivity of 44.33% for CHM and 37.5% for PHM. The overall classification accuracy of the original morphological diagnosis was 65.97%. After exclusion of the initially untyped HMs, the overall agreement rate was 59.11% (κ=0.364, p<0.0001) between the original and refined diagnoses, with a sensitivity of 40.09% and PPV of 96.05% for diagnosing CHMs and a sensitivity of 84.98% and a PPV of 45.59% for diagnosing PHMs. The interinstitutional variability of morphology in diagnosing HMs was significant among the 15 centres (range, 8.33%-100.00%, p<0.0001). CONCLUSION: The current diagnosis of HM based solely on ultrasound or morphology remains problematic, and ancillary techniques, particularly p57 immunohistochemistry and DNA genotyping, should be integrated into routine practice as much as possible.

8.
Small ; : e2403859, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030860

ABSTRACT

The electrocatalytic production of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (2e- ORR) has garnered significant research attention in recent years due to its numerous appealing advantages, such as being eco-friendly and exhibiting high energy conversion efficiency. Metal-free carbon materials with specific catalytic sites have been recognized as potential electrocatalysts for 2e- ORR; however, the design of highly efficient catalysts with well-defined structures and long-term stability for large-scale H2O2 production remains unsatisfactory. In this study, three covalent organic frameworks (COFs) - imine-linked LZU-1, oxazole-linked LZU-190, and thiazole-linked LZU-190(S), are successfully synthesized to explore their catalytic activity in electrocatalytic H2O2 production. Among these, the carbon sites LZU-190(S) are predominantly activated by the introduced adjacent heteroatoms via electronic effects, resulting in much higher H2O2 selectivity compared to the oxazole and imine linkages. This work provides new insights into developing COFs-based electrocatalysts for efficient H2O2 generation.

9.
Nat Commun ; 15(1): 6365, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075094

ABSTRACT

Cell fate decisions remain poorly understood at the molecular level. Embryogenesis provides a unique opportunity to analyze molecular details associated with cell fate decisions. Works based on model organisms have provided a conceptual framework of genes that specify cell fate control, for example, transcription factors (TFs) controlling processes from pluripotency to immunity1. How TFs specify cell fate remains poorly understood. Here we report that SALL4 relies on NuRD (nucleosome-remodeling and deacetylase complex) to interpret BMP4 signal and decide cell fate in a well-controlled in vitro system. While NuRD complex cooperates with SALL4 to convert mouse embryonic fibroblasts or MEFs to pluripotency, BMP4 diverts the same process to an alternative fate, PrE (primitive endoderm). Mechanistically, BMP4 signals the dissociation of SALL4 from NuRD physically to establish a gene regulatory network for PrE. Our results provide a conceptual framework to explore the rich landscapes of cell fate choices intrinsic to development in higher organisms involving morphogen-TF-chromatin modifier pathways.


Subject(s)
Bone Morphogenetic Protein 4 , Cell Differentiation , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Bone Morphogenetic Protein 4/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Chromatin/metabolism , Gene Regulatory Networks , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Endoderm/metabolism , Endoderm/cytology , Signal Transduction , Cell Lineage , DNA-Binding Proteins
10.
Aging (Albany NY) ; 162024 Jul 05.
Article in English | MEDLINE | ID: mdl-39074253

ABSTRACT

BACKGROUND: Apoptosis Regulator BCL2 Associated X (BAX) is a pro-apoptotic gene. Apoptosis is one of the important components of immune response and immune regulation. However, there is no systematic pan-cancer analysis of BAX. METHODS: Original data of this study were downloaded from TCGA databases and GTEX databases. We conducted the gene expression analysis and survival analysis of BAX in 33 types of cancer via Gene Expression Profiling Interactive Analysis (GEPIA) database. Real-time PCR and immunohistochemistry (IHC) were further performed to examine the BAX expression in cancer cells and tissues. Moreover, the relationship between BAX and immune infiltration and gene alteration was studied by the Tumor Immune Estimation Resource (TIMER) and cBioPortal tools. Protein-protein interaction analysis was performed in the STRING database. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to evaluate the enrichment analysis. RESULTS: BAX was highly expressed in most cancers and was associated with poor prognosis in nine cancer types. In addition, BAX showed significant clinical relevance, and the mRNA expression of BAX was also strongly associated with drug sensitivity of many drugs. Furthermore, BAX may participate in proliferation and metastasis of many cancers and was associated with methylation. Importantly, BAX expression was positively correlated with most immune infiltrating cells. CONCLUSION: Our findings suggested that BAX can function as an oncogene and may be used as a potential predictive biomarker for prognosis and immunotherapy efficacy of human cancer, which could provide a new approach for cancer therapy.

11.
J Ethnopharmacol ; 335: 118615, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39069030

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Amomum villosum Lour. is a widely esteemed species of medicinal plant on a global scale. Its medicinal properties have been documented as early as the Tang Dynasty, particularly the fruit, which holds significant medicinal and culinary value. This plant is extensively found in tropical and subtropical regions across Asia. It possesses the properties of warming the middle and dispelling cold, regulating Qi to invigorate the spleen, harmonizing the stomach to alleviate vomiting, and nourishing deficiencies. In recent years, A. villosum has garnered global attention for its remarkable biological activity. Currently, numerous bioactive compounds have been successfully isolated and identified, showcasing a diverse array of pharmacological activities and medicinal benefits. AIM OF THE WORK: This review aims to provide a comprehensive analysis of the research advancements in the geographical distribution, botany, traditional applications, phytochemistry, pharmacological activity, quality control, clinical applications, and toxicology of A. villosum. Furthermore, a critical summary of the current research and future prospects of this plant is presented. MATERIALS AND METHODS: Obtain information about A. villosum from ancient literature, doctoral and master's theses, and scholarly databases including Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, plant directories, and clinical reports. RESULTS: At present, about 500 compounds have been isolated and identified from various organs of A. villosum, including monoterpenoids, sesquiterpenoids, diterpenoids, flavonoids, phenols, polysaccharides, and other components. Modern pharmacological studies have revealed that A. villosum exhibits exceptional biological activities in vitro and in vivo, such as anti-inflammatory, antioxidant, liver protection, anti-tumor, hypoglycemic, anti-microbial, regulating gastrointestinal activity, immune regulation, regulating flora, anti-obesity, estrogen, and more. Some of these activities have found extensive application in clinical practice. CONCLUSION: A. villosum, as a well-established medicinal herb, holds significant therapeutic potential and is also valued for its culinary applications. Currently, the research on the active components or crude extracts of A. villosum and their potential mechanisms of action remains limited. Furthermore, certain pharmacological activities require further elucidation for a comprehensive understanding of its internal mechanisms. Moreover, it is strongly recommended to prioritize research on pharmacokinetics and toxicity studies. These efforts will facilitate a thorough exploration of the potential of A. villosum and establish a robust foundation for its potential clinical applications.

12.
Nat Commun ; 15(1): 5713, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977661

ABSTRACT

Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes. Mettl1/Wdr4 and m7G gradually diminish with senescence and aging. A decrease in METTL1 causes a reduction in tRNAs, especially those with the m7G modification, via the rapid tRNA degradation (RTD) pathway. The decreases cause ribosomes to stall at certain codons, impeding the translation of mRNA that is essential in pathways such as Wnt signaling and ribosome biogenesis. Furthermore, chronic ribosome stalling stimulates the ribotoxic and integrative stress responses, which induce senescence-associated secretory phenotype. Moreover, restoring eEF1A protein mitigates senescence phenotypes caused by METTL1 deficiency by reducing RTD. Our findings demonstrate that tRNA m7G modification is essential for preventing premature senescence and aging by enabling efficient mRNA translation.


Subject(s)
Cellular Senescence , Guanosine , Methyltransferases , Protein Biosynthesis , RNA, Transfer , Cellular Senescence/genetics , RNA, Transfer/metabolism , RNA, Transfer/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Guanosine/analogs & derivatives , Guanosine/metabolism , Methylation , Humans , Ribosomes/metabolism , Aging/metabolism , Aging/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Animals , Peptide Elongation Factor 1/metabolism , Peptide Elongation Factor 1/genetics , RNA Stability
13.
BMC Urol ; 24(1): 140, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972999

ABSTRACT

OBJECTIVE: The objective of this study was to develop and evaluate the performance of machine learning models for predicting the possibility of systemic inflammatory response syndrome (SIRS) following percutaneous nephrolithotomy (PCNL). METHODS: We retrospectively reviewed the clinical data of 337 patients who received PCNL between May 2020 and June 2022. In our study, 80% of the data were used as the training set, and the remaining data were used as the testing set. Separate prediction models based on the six machine learning algorithms were created using the training set. The predictive performance of each machine learning model was determined by the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity using the testing set. We used coefficients to interpret the contribution of each variable to the predictive performance. RESULTS: Among the six machine learning algorithms, the support vector machine (SVM) delivered the best performance with accuracy of 0.868, AUC of 0.942 (95% CI 0.890-0.994) in the testing set. Further analysis using the SVM model showed that prealbumin contributed the most to the prediction of the outcome, followed by preoperative urine culture, systemic immune-inflammation (SII), neutrophil to lymphocyte ratio (NLR), staghorn stones, fibrinogen, operation time, preoperative urine white blood cell (WBC), preoperative urea nitrogen, hydronephrosis, stone burden, sex and preoperative lymphocyte count. CONCLUSION: Machine learning-based prediction models can accurately predict the possibility of SIRS after PCNL in advance by learning patient clinical data, and should be used to guide surgeons in clinical decision-making.


Subject(s)
Machine Learning , Nephrolithotomy, Percutaneous , Postoperative Complications , Systemic Inflammatory Response Syndrome , Humans , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/diagnosis , Nephrolithotomy, Percutaneous/adverse effects , Female , Male , Retrospective Studies , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Adult , Predictive Value of Tests , Aged , Kidney Calculi/surgery
14.
Front Pharmacol ; 15: 1412816, 2024.
Article in English | MEDLINE | ID: mdl-38978983

ABSTRACT

Background: Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) and Schisandra sphenanthera Rehder & E.H. Wilson are traditional edible and medicinal hepatoprotective botanical drugs. Studies have shown that the combination of two botanical drugs enhanced the effects of treating acute liver injury (ALI), but the synergistic effect and its action mechanisms remain unclear. This study aimed to investigate the synergistic effect and its mechanism of the combination of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) (PM) and Schisandra sphenanthera Rehder & E.H. Wilson (SS) in the treatment of ALI. Methods: High performance liquid chromatography (HPLC) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of botanical hybrid preparation of PM-SS (BHP PM-SS) against ALI were comprehensively evaluated by the CCl4 induced ALI mice model. Afterwards, symptom-oriented network pharmacology, transcriptomics and metabolomics were applied to reveal the underlying mechanism of action. Finally, the key target genes were experimentally by RT-qPCR. Results: Chemical analysis and pharmacodynamic experiments revealed that BHP PM-SS was superior to the single botanical drug, especially at 2:3 ratio, with a better dissolution rate of active ingredients and synergistic anti-ALI effect. Integrated symptom-oriented network pharmacology combined with transcriptomics and metabolomics analyses showed that the active ingredients of BHP PM-SS could regulate Glutathione metabolism, Pyrimidine metabolism, Arginine biosynthesis and Amino acid sugar and nucleotide sugar metabolism, by acting on the targets of AKT1, TNF, EGFR, JUN, HSP90AA1 and STAT3, which could be responsible for the PI3K-AKT signaling pathway, MAPK signaling pathway and Pathway in cancer to against ALI. Conclusion: Our study has provided compelling evidence for the synergistic effect and its mechanism of the combination of BHP PM-SS, and has contributed to the development and utilization of BHP PM-SS dietary supplements.

16.
Phytomedicine ; 132: 155674, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38901283

ABSTRACT

BACKGROUND: Cardiovascular and cerebrovascular disease (CCVD) is the leading cause of morbidity and mortality worldwide, imposing a significant economic burden on individuals and societies. For the past few years, Traditional Chinese Medicine (TCM) has attracted much attention due to its advantages such as fewer side effects in the treatment of CCVD. TXL has shown great promise in the treatment of CCVD. PURPOSE: This paper aims to provide a comprehensive introduction to TXL, covering its chemical constituents, quality control, pharmacological properties, adverse reactions, and clinical applications through an extensive search of relevant electronic databases while discussing its current challenges and provides opinions for future study. METHODS: The following electronic databases were searched up to 2023: "TXL", "CCVD", "Chemical constituents", "Quality control" and "Pharmacological properties" were entered as keywords in PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure Database and WANFANG DATA databases. The PRISMA guidelines were followed in this review process. RESULTS: Studies have confirmed that TXL is effective in treating patients with CCVD and has fewer adverse effects. The aim of this review is to explore TXL anti-CCVD effects in relation to oxidative stress, lipid metabolism and enhanced cardiac function. This review also provides additional information on safety issues. CONCLUSION: TXL plays a key role in the treatment of CCVD by regulating various pathways such as lipid metabolism, oxidative stress and inflammation. However, further clinical trials and animal experiments are needed to provide more evidence and recommendations for its clinical application. This article provides an overview of TXL research to inform and inspire future studies.

17.
ACS Appl Mater Interfaces ; 16(24): 30890-30899, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38843539

ABSTRACT

Multimodal sensing platforms may offer reliable, fast results, but it is still challenging to incorporate biosensors with high discriminating ability in complex biological samples. Herein, we established a highly sensitive dual colorimetric/electrochemical monitoring approach for the detection of hydrogen sulfide (H2S) utilizing Cu-doped In-based metal-organic frameworks (Cu/In-MOFs) combined with a versatile color selector software-based smartphone imaging device. H2S can result in the enhancement of the electrochemical signal because of the electroactive substance copper sulfide (CuxS), the decrease of the colorimetric signal of the characteristic absorption response caused by the strong coordination effect on Cu/In-MOFs, and the obvious changes of red-green-blue (RGB) values of images acquired via an intelligent smartphone. Attractively, the Cu/In-MOFs-based multimodal detection guarantees precise and sensitive detection of H2S with triple-signal detection limits of 0.096 µM (electrochemical signals), 0.098 µM (colorimetric signals), and 0.099 µM (smartphone signals) and an outstanding linear response. This analytical toolkit provides an idea for fabricating a robust, sensitive, tolerant matrix and reliable sensing platform for rapidly monitoring H2S in clinical disease diagnosis and visual supervision.


Subject(s)
Colorimetry , Copper , Electrochemical Techniques , Hydrogen Sulfide , Metal-Organic Frameworks , Smartphone , Hydrogen Sulfide/analysis , Copper/chemistry , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Limit of Detection , Indium/chemistry
18.
Cell Biosci ; 14(1): 81, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886783

ABSTRACT

BACKGROUND: Histone ubiquitination modification is emerging as a critical epigenetic mechanism involved in a range of biological processes. In vitro reconstitution of ubiquitinated nucleosomes is pivotal for elucidating the influence of histone ubiquitination on chromatin dynamics. RESULTS: In this study, we introduce a Non-Denatured Histone Octamer Ubiquitylation (NDHOU) approach for generating ubiquitin or ubiquitin-like modified histone octamers. The method entails the co-expression and purification of histone octamers, followed by their chemical cross-linking to ubiquitin using 1,3-dibromoacetone. We demonstrate that nucleosomes reconstituted with these octamers display a high degree of homogeneity, rendering them highly compatible with in vitro biochemical assays. These ubiquitinated nucleosomes mimic physiological substrates in function and structure. Additionally, we have extended this method to cross-linking various histone octamers and three types of ubiquitin-like proteins. CONCLUSIONS: Overall, our findings offer an efficient strategy for producing ubiquitinated nucleosomes, advancing biochemical and biophysical studies in the field of chromatin biology.

19.
Healthcare (Basel) ; 12(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891188

ABSTRACT

Online medical teams (OMTs), a new mode of online healthcare service, have emerged in online health communities (OHCs) in China. This study attempts to explore the underlying mechanism of how OMTs' engagement influences patient satisfaction through the lens of semantic features. This study also scrutinizes the moderating effect of multiple specializations on the link between OMTs' engagement and semantic features. We utilized a linear model that had fixed effects controlled at the team level for analysis. A bootstrapping approach using 5000 samples was employed to test the mediation effects. The findings reveal that OMTs' engagement significantly improves language concreteness in online team consultations, which subsequently enhances patient satisfaction. OMT engagement has a negative impact on emotional intensity, ultimately decreasing patient satisfaction. Multiple specializations strengthen the impact of OMT engagement on both language concreteness and emotional intensity. This study contributes to the literature on OMTs and patient satisfaction, providing insights into patients' perceptions of OMTs' engagement during online team consultation. This study also generates several implications for the practice of OHCs and OMTs.

20.
Int J Hyperthermia ; 41(1): 2369305, 2024.
Article in English | MEDLINE | ID: mdl-38897626

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of performing histotripsy through overlying gas-filled bowel in an ex vivo swine model. METHODS: An ex vivo model was created to simulate histotripsy treatment of solid organs through gas-filled bowel. Spherical 2.5 cm histotripsy treatments were performed in agar phantoms for each of five treatment groups: 1) control with no overlying bowel (n = 6), 2) bowel 0 cm above phantom (n = 6), 3) bowel 1 cm above phantom (n = 6), 4) bowel 2 cm above phantom (n = 6), and 5) bowel 0 cm above the phantom with increased treatment amplitude (n = 6). Bowel was inspected for gross and microscopic damage, and treatment zones were measured. A ray-tracing simulation estimated the percentage of therapeutic beam path blockage by bowel in each scenario. RESULTS: All histotripsy treatments through partial blockage were successful (24/24). No visible or microscopic damage was observed to intervening bowel. Partial blockage resulted in a small increase in treatment volume compared to controls (p = 0.002 and p = 0.036 for groups with bowel 0 cm above the phantom, p > 0.3 for bowel 1 cm and 2 cm above the phantom). Gas-filled bowel was estimated to have blocked 49.6%, 35.0%, and 27.3% of the therapeutic beam at 0, 1, and 2 cm, respectively. CONCLUSION: Histotripsy has the potential to be applied through partial gas blockage of the therapeutic beam path, as shown by this ex vivo small bowel model. Further work in an in vivo survival model appears indicated.


Subject(s)
Intestine, Small , Animals , Swine , Gases
SELECTION OF CITATIONS
SEARCH DETAIL