Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.836
Filter
1.
J Environ Sci (China) ; 149: 57-67, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181668

ABSTRACT

Size-fractionated particulate matter (PM2.5 and PM>2.5) was collected at a traffic site in Kanazawa, Japan in a seasonal sampling work in 2020. Nine polycyclic aromatic hydrocarbons (4- to 6-ring PAHs) were determined in fine and coarse particles. The gas/particle partitioning coefficients (Kp) of the PAHs were calculated from the supercooled liquid vapour pressure and octanol-air partitioning coefficient based on the relationships obtained in previous traffic pollution-related studies. Gaseous PAHs were estimated by Kp and the concentrations of PM and particulate PAHs. The concentrations of total PAHs were 32.5, 320.1 and 5646.2 pg/m3 in the PM>2.5, PM2.5 and gas phases, respectively. Significant seasonal trends in PAHs were observed (particle phase: lowest in summer, gas phase: lowest in spring, particle and gas phase: lowest in spring). Compared to 2019, the total PAH concentrations (in particles) decreased in 2020, especially in spring and summer, which might be due to reduced traffic trips during the COVID-19 outbreak. The incremental lifetime cancer risk (ILCR) calculated from the toxic equivalent concentrations relative to benzo[a]pyrene (BaPeq) was lower than the acceptable limit issued by the US Environmental Protection Agency, indicating a low cancer risk in long-term exposure to current PAH levels. It is notable that gaseous PAHs considerably contributed to BaPeq and ILCR (over 50%), which highlighted the significance of gaseous PAH monitoring for public health protection. This low-cost estimation method for gaseous PAHs can be expected to reliably and conveniently obtain PAH concentrations as a surrogate for traditional sampling in the future work.


Subject(s)
Air Pollutants , Environmental Monitoring , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Japan , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Vehicle Emissions/analysis , Seasons
2.
Sci Rep ; 14(1): 20803, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242633

ABSTRACT

To investigate the association between single nucleotide polymorphism (SNP) at the rs3918188, rs1799983 and rs1007311 loci of the endothelial nitric oxide synthase (eNOS) gene and genetic susceptibility to systemic lupus erythematosus (SLE) in northeastern China. The base distribution of eNOS gene rs3918188, rs1799983 and rs1007311 in 1712 human peripheral blood samples from Northeast China was detected by SNaPshot sequencing technology. The correlation between genotype, allele and gene model of these loci of the eNOS gene and the genetic susceptibility to SLE was investigated by logistic regression analysis. The results of the differences in the frequency distribution of their gene models were visualised using R 4.3.2 software. Finally, HaploView 4.2 software was used to analyse the relationship between the haplotypes of the three loci mentioned above and the genetic susceptibility to SLE. A multifactor dimensionality reduction (MDR) analysis was used to determine the best SNP-SNP interaction model. The CC genotype and C allele at the rs3918188 locus may be a risk factor for SLE (CC vs AA: OR = 1.827, P < 0.05; C vs A: OR = 1.558, P < 0.001), and this locus increased the risk of SLE in the dominant model and the recessive model (AC + CC vs AA: OR = 1.542, P < 0.05; CC vs AA + AC: OR = 1.707, P < 0.001), while the risk of SLE was reduced in the overdominant model (AC vs AA + CC: OR = 0.628, P < 0.001). The GT genotype and T allele at locus rs1799983 may be a protective factor for SLE (GT vs GG: OR = 0.328, P < 0.001; T vs G: OR = 0.438, P < 0.001) and this locus reduced the risk of SLE in the overdominant model (GT vs GG + TT: OR = 0.385, P < 0.001). There is a strong linkage disequilibrium between the rs1007311 and rs1799983 loci of the eNOS gene. Among them, the formed haplotype AG increased the risk of SLE compared to GG. AT and GT decreased the risk of SLE compared to GG. In this study, the eNOS gene rs3918188 and rs1799983 loci were found to be associated with susceptibility to SLE. This helps to deeply explore the mechanism of eNOS gene and genetic susceptibility to SLE. It provides a certain research basis for the subsequent exploration of the molecular mechanism of these loci and SLE, as well as the early diagnosis, treatment and prognosis of SLE.


Subject(s)
Genetic Predisposition to Disease , Haplotypes , Lupus Erythematosus, Systemic , Nitric Oxide Synthase Type III , Polymorphism, Single Nucleotide , Lupus Erythematosus, Systemic/genetics , Humans , China/epidemiology , Nitric Oxide Synthase Type III/genetics , Female , Male , Adult , Middle Aged , Genotype , Alleles , Gene Frequency , Case-Control Studies , Linkage Disequilibrium , Genetic Association Studies
3.
Cell Rep ; 43(9): 114652, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39217612

ABSTRACT

Cancer cells with mitochondrial dysfunction can be rescued by cells in the tumor microenvironment. Using human adenoid cystic carcinoma cell lines and fibroblasts, we find that mitochondrial transfer occurs not only between human cells but also between human and mouse cells both in vitro and in vivo. Intriguingly, spontaneous cell fusion between cancer cells and fibroblasts could also emerge; specific chromosome loss might be essential for nucleus reorganization and the post-hybrid selection process. Both mitochondrial transfer through tunneling nanotubes (TNTs) and cell fusion "selectively" revive cancer cells, with mitochondrial dysfunction as a key motivator. Beyond mitochondrial transfer, cell fusion significantly enhances cancer malignancy and promotes epithelial-mesenchymal transition. Mechanistically, mitochondrial dysfunction in cancer cells causes L-lactate secretion to attract fibroblasts to extend TNTs and TMEM16F-mediated phosphatidylserine externalization, facilitating TNT formation and cell-membrane fusion. Our findings offer insights into mitochondrial transfer and cell fusion, highlighting potential cancer therapy targets.

4.
Appl Environ Microbiol ; : e0131924, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248463

ABSTRACT

3,6-Dichlorosalicylic acid (3,6-DCSA) is the demethylation metabolite of herbicide 3,6-dichloro-2-methoxy benzoic acid (dicamba). Previous studies have shown that anaerobic sludge further transformed 3,6-DCSA through decarboxylation and dechlorination. However, the anaerobe, enzyme, and gene involved in the anaerobic degradation of 3,6-DCSA are still unknown. In this study, an anaerobic sludge that efficiently degraded dicamba was enriched, and a 3,6-DCSA decarboxylase, designated chlorosalicylic acid decarboxylase (CsaD), was partially purified and identified from the anaerobic sludge. Metagenomic analysis showed that the csaD gene was located in a gene cluster of metagenome-assembled genome 8 (MAG8). MAG8 belonged to an uncultured order, OPB41, in the class Coriobacteriia of the phylum Actinobacteria, and its abundance increased approximately once during the enrichment process. CsaD was a non-oxidative decarboxylase in the amidohydrolase 2 family catalyzing the decarboxylation of 3,6-DCSA and 6-chlorosalicylic acid (6-CSA). Its affinity and catalytic efficiency for 3,6-DCSA were significantly higher than those for 6-CSA. This study provides new insights into the anaerobic catabolism of herbicide dicamba.IMPORTANCEDicamba, an important hormone herbicide, easily migrates to anoxic habitats such as sediment, ground water, and deep soil. Thus, the anaerobic catabolism of dicamba is of importance. Anaerobic bacteria or sludge demethylated dicamba to 3,6-DCSA, and in a previous study, based on metabolite identification, it was proposed that 3,6-DCSA be further degraded via two pathways: decarboxylation to 2,5-dichlorophenol, then dechlorination to 3-chlorophenol (3-CP); or dechlorination to 6-CSA, then decarboxylation to 3-CP. However, there was no physiological and genetic validation for the pathway. In this study, CsaD catalyzed the decarboxylation of both 3,6-DCSA and 6-CSA, providing enzyme-level evidence for the anaerobic catabolism of 3,6-DCSA through the two pathways. CsaD was located in MAG8, which belonged to an uncultured anaerobic actinomycetes order, OPB41, indicating that anaerobic actinomycetes in OPB41 was involved in the decarboxylation of 3,6-DCSA. This study provides a basis for understanding the anaerobic catabolism of dicamba and the demethylation product, 3,6-DCSA.

5.
Anal Chem ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240680

ABSTRACT

A multiplex assay of mycotoxins in food and medicine is urgently needed and challenging due to synergistic hazards of trace mycotoxins and a lack of sensitive and user-friendly detection approaches. Herein, a cobalt DNA-inorganic hybrid superstructure (Co@DS) was developed through isothermal rolling circle amplification (RCA) for an ultrasensitive chemiluminescence (CL) imaging assay of multiple mycotoxins. Cobalt ions were enriched in the RCA product, endowing the Co@DS with a high CL catalytic property. Experimental studies elucidated the formation and CL catalytic mechanism of Co@DS. Co@DS was facilely integrated with biotinylated DNA to function as a universal platform and combined with a disposable immunosensor array chip. After a competitive immunoassay and biotin-avidin recognition, the CL signals of luminol and hydrogen peroxide, catalyzed by Co@DS captured on each testing zone of the array chip, were imaged simultaneously. Target mycotoxins can be quantitated by CL intensities. To validate the concept, the CL imaging approach was employed for joint determination of aflatoxin B1, ochratoxins A, and zearalenone. Under optimal conditions, it showed advantages including simple sample pretreatment, acceptable throughput, high accuracy, minimal sample consumption, broad linear ranges, and detection limits as low as 0.75, 0.62, and 0.61 pg mL-1, respectively. Furthermore, the approach was applied in analyzing real coix seed samples, showcasing excellent performance in effectively distinguishing qualified and contaminated medicine, revealing the great potential in managing the complex issue of mycotoxins cocontamination in food and medicine.

6.
Nat Commun ; 15(1): 7641, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223130

ABSTRACT

Reuse and recycling of retired electric vehicle (EV) batteries offer a sustainable waste management approach but face decision-making challenges. Based on the process-based life cycle assessment method, we present a strategy to optimize pathways of retired battery treatments economically and environmentally. The strategy is applied to various reuse scenarios with capacity configurations, including energy storage systems, communication base stations, and low-speed vehicles. Hydrometallurgical, pyrometallurgical, and direct recycling considering battery residual values are evaluated at the end-of-life stage. For the optimized pathway, lithium iron phosphate (LFP) batteries improve profits by 58% and reduce emissions by 18% compared to hydrometallurgical recycling without reuse. Lithium nickel manganese cobalt oxide (NMC) batteries boost profit by 19% and reduce emissions by 18%. Despite NMC batteries exhibiting higher immediate recycling returns, LFP batteries provide superior long-term benefits through reuse before recycling. Our strategy features an accessible evaluation framework for pinpointing optimal pathways of retired EV batteries.

7.
PLoS One ; 19(9): e0309833, 2024.
Article in English | MEDLINE | ID: mdl-39240867

ABSTRACT

Pulmonary fibrosis (PF) is an interstitial lung disease characterized by inflammation and fibrotic changes, with an unknown cause. In the early stages of PF, severe inflammation leads to the destruction of lung tissue, followed by upregulation of fibrotic factors like Transforming growth factor-ß (TGF-ß) and connective tissue growth factor (CTGF), which disrupt normal tissue repair. Geniposide, a natural iridoid glycoside primarily derived from the fruits of Gardenia jasminoides Ellis, possesses various pharmacological activities, including liver protection, choleretic effects, and anti-inflammatory properties. In this study, we investigated the effects of Geniposide on chronic inflammation and fibrosis induced by bleomycin (BLM) in mice with pulmonary fibrosis (PF). PF was induced by intratracheal instillation of bleomycin, and Geniposide(100/50/25mg•kg-1) was orally administered to the mice once a day until euthanasia(14 day/28 day). The Raw264.7 cell inflammation induced by LPS was used to evaluate the effect of Geniposide on the activation of macrophage. Our results demonstrated that Geniposide reduced lung coefficients, decreased the content of Hydroxyproline, and improved pathological changes in lung tissue. It also reduced the number of inflammatory cells and levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) of bleomycin-induced PF mice. At the molecular level, Geniposide significantly down-regulated the expression of TGF-ß1, Smad2/3, p38, and CTGF in lung tissues of PF mice induced by bleomycin. Molecular docking results revealed that Geniposide exhibited good binding activity with TGF-ß1, Smad2, Smad3, and p38. In vitro study showed Geniposide directly inhibited the activation of macrophage induced by LPS. In conclusion, our findings suggest that Geniposide can ameliorate bleomycin-induced pulmonary fibrosis in mice by inhibiting the TGF-ß/Smad and p38MAPK signaling pathways.


Subject(s)
Bleomycin , Iridoids , Pulmonary Fibrosis , Transforming Growth Factor beta , p38 Mitogen-Activated Protein Kinases , Animals , Bleomycin/adverse effects , Bleomycin/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Iridoids/pharmacology , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Male , RAW 264.7 Cells , Lung/pathology , Lung/drug effects , Lung/metabolism , Smad Proteins/metabolism , Connective Tissue Growth Factor/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL
8.
Environ Res ; 261: 119762, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122165

ABSTRACT

Storm events result in nutrient fluctuations and deterioration of reservoir water supply quality. Understanding of nutrient dynamics (e.g., concentration, composition, loads and transport pathways) and adoption of effective management strategies are critical for safeguarding water quality. A comprehensive monitoring was conducted for three storm events during the rainy season in 2023. Results showed nitrogen (N) and phosphorus (P) dynamics demonstrate a significant response to hydrological process. Rainfall resulted in the highest event mean concentrations (EMCs) of total nitrogen (TN), nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N), total phosphorus (TP), and particulate phosphorus (PP) in the runoff being 1.97, 2.15, 2.30, 44.17, and 62.38 times higher than those observed in baseflow. On average, NO3--N/PP accounted for 82 %/96 % of N/P exports. Hysteresis analyses reveal that NH4+-N and PP were mainly transported by surface runoff from over-land sources, whereas TN and NO3--N were primarily delivered by subsurface runoff. Additionally, nutrient concentrations were significantly higher in the intrusive layer in reservoir compared to the pre-storm period, which gradually decreased from the tail to the head as particulate sedimentation and water column mixing occurred. Water-lifting-aerators (WLAs) were employed to alter the reservoir thermal stratification regime via artificial mixing to affect the intrusive layer of storm runoff. Comparison of the intrusive layer for three storms reveals that WLAs triggers the storm runoff to form an underflow via increasing the reservoir bottom water temperature above that the runoff, ensuring that water quality at the intake position remains unaffected by inflows. These findings serve as a reference for the response of reservoir eutrophication levels to storm events and present practical engineering experience for enhancing water quality safety during the rainy season.

9.
Imeta ; 3(4): e220, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135700

ABSTRACT

Emerging evidence has demonstrated the profound impact of the gut microbiome on cardiovascular diseases through the production of diverse metabolites. Using an animal model of myocardial ischemia-reperfusion (I/R) injury, we found that the prophylactic administration of a well-known probiotic, Bifidobacterium infantis (B. infantis), exhibited cardioprotective effects in terms of preserving cardiac contractile function and preventing adverse cardiac remodeling following I/R and that these cardioprotective effects were recapitulated by its metabolite inosine. Transcriptomic analysis further revealed that inosine mitigated I/R-induced cardiac inflammation and cell death. Mechanistic investigations elucidated that inosine suppressed the production of pro-inflammatory cytokines and reduced the numbers of dendritic cells and natural killer cells, achieved through the activation of the adenosine A2A receptor (A2AR) that when inhibited abrogated the cardioprotective effects of inosine. Additionally, in vitro studies using C2C12 myoblasts revealed that inosine attenuated cell death by serving as an alternative carbon source for adenosine triphosphate (ATP) generation through the purine salvage pathway when subjected to oxygen-glucose deprivation/reoxygenation that simulated myocardial I/R injury. Likewise, inosine reversed the I/R-induced decrease in ATP levels in mouse hearts. Taken together, our findings indicate that B. infantis or its metabolite inosine exerts cardioprotective effects against I/R by suppressing cardiac inflammation and attenuating cardiac cell death, suggesting prophylactic therapeutic options for acute ischemic cardiac injury.

10.
Foods ; 13(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39123655

ABSTRACT

The purpose of this work was to construct liver-targeted nanoparticles based on the redox response to effectively deliver cannabidiol (CBD) for the prevention of acute liver injury (ALI). CBD-loaded nanoparticles (CBD NPs) with a particle size of 126.5 ± 1.56 nm were prepared using the polymer DA-PP-LA obtained by grafting pullulan polysaccharide with deoxycholic acid (DA) and α-lipoic acid (α-LA). CBD NPs showed typical redox-response release behavior. Interestingly, CBD NPs exhibited admirable liver targeting ability, significantly accumulated in the liver, and effectively promoted the internalization of CBD in liver cells, thus effectively reducing the H2O2-induced oxidative damage of HepG2 cells and avoiding apoptosis. More importantly, CBD NPs effectively prevented CCl4-induced ALI by protecting liver function, ameliorating oxidative stress levels, inhibiting the production of inflammatory factors, and protecting the liver from histological damage. This study provides a promising strategy for achieving targeted delivery of CBD NPs in the liver, thereby effectively preventing ALI.

11.
Materials (Basel) ; 17(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39124536

ABSTRACT

Keyhole tungsten inert gas (keyhole TIG) welding is renowned for its advanced efficiency, necessitating a real-time defect detection method that integrates deep learning and enhanced vision techniques. This study employs a multi-layer deep neural network trained on an extensive welding image dataset. Neural networks can capture complex nonlinear relationships through multi-layer transformations without manual feature selection. Conversely, the nonlinear modeling ability of support vector machines (SVM) is limited by manually selected kernel functions and parameters, resulting in poor performance for recognizing burn-through and good welds images. SVMs handle only lower-level features such as porosity and excel only in detecting simple edges and shapes. However, neural networks excel in processing deep feature maps of "molten pools" and can encode deep defects that are often confused in keyhole TIG. Applying a four-class classification task to weld pool images, the neural network adeptly distinguishes various weld states, including good welds, burn-through, partial penetration, and undercut. Experimental results demonstrate high accuracy and real-time performance. A comprehensive dataset, prepared through meticulous preprocessing and augmentation, ensures reliable results. This method provides an effective solution for quality control and defect prevention in keyhole TIG welding process.

12.
Article in English | MEDLINE | ID: mdl-39129074

ABSTRACT

OBJECTIVE: U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN: In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS: Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS: High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.

13.
Anal Chem ; 96(32): 13270-13277, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39093913

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.


Subject(s)
Biomarkers, Tumor , Cadherins , Epithelial-Mesenchymal Transition , Humans , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cadherins/analysis , Cadherins/metabolism , Fluorescent Dyes/chemistry , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/metabolism , MCF-7 Cells , Boronic Acids/chemistry , N-Acetylneuraminic Acid/analysis , N-Acetylneuraminic Acid/metabolism
14.
Cell Biochem Biophys ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174865

ABSTRACT

This study established an LPS-induced RAW264.7 macrophage inflammatory injury model and an AS mouse vulnerable plaque model to observe the effect of JPHYP on macrophage inflammation, plaque formation, blood lipids, inflammation levels, intestinal flora and the influence of TLR4/MyD88/MAPK pathway, and explore the anti-AS effect and molecular mechanism of JPHYP, and detected 16S rRNA of mice intestinal microbes. The difference of intestinal flora in different groups of mice was compared to further explore the intervention effect of JPHYP and clarify the molecular biological mechanism of JPHYP in preventing and treating AS by regulating TLR4/MyD88/MAPK inflammatory signaling pathway and improving intestinal flora.

15.
J Adv Res ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159723

ABSTRACT

INTRODUCTION: Heterogeneous tissue stiffening promotes tumor progression and resistance, and predicts a poor clinical outcome in patients with hepatocellular carcinoma (HCC). Ferroptosis, a congenital tumor suppressive mechanism, mediates the anticancer activity of various tumor suppressors, including immune checkpoint inhibitors, and its induction is currently considered a promising treatment strategy. However, the role of extracellular matrix (ECM) stiffness in regulating ferroptosis and ferroptosis-targeted resistance in HCC remains unclear. OBJECTIVES: This research aimed to explore how extracellular matrix stiffness affects ferroptosis and its treatment efficacy in HCC. METHODS: Ferroptosis analysis was confirmed via cell activity, intracellular ferrous irons, and mitochondrial pathology assays. Baseline PD-L2, SMYD3, and SLC7A11 (xCT) were evaluated in 67 sorafenib-treated patients with HCC (46 for non-responder and 21 for responder) from public data. The combined efficacy of shPD-L2, sorafenib, and anti-PD-1 antibody in HCC was investigated in vivo. RESULTS: Here, we revealed that matrix stiffness-induced PD-L2 functions as a suppressor of xCT-mediated ferroptosis to promote cancer growth and sorafenib resistance in patients with HCC. Mechanically, matrix stiffening induced the expression of PD-L2 by activating SMYD3/H3K4me3, which acts as an RNA binding protein to enhance the mRNA stability of FTL and elevate its protein level. Knockdown of PD-L2 significantly promoted xCT-mediated ferroptosis induced by RSL3 or sorafenib on stiff substrate via FTL, whereas its overexpression abolished these upward trends. Notably, PD-L2 deletion in combination with sorafenib and anti-PD-1 antibody significantly sensitized HCC cells and blunted cancer growth in vivo. Additionally, we found the ferroptosis- and immune checkpoint-related prognostic genes that combined PD-L2, SLC7A11 and SYMD3 well predict the clinical efficacy of sorafenib in patients with HCC. CONCLUSION: These findings expand our understanding of the mechanics-dependent PD-L2 role in ferroptosis, cancer progression and resistance, providing a basis for the clinical translation of PD-L2 as a therapeutic target or diagnostic biomarker.

16.
Int J Biol Macromol ; 277(Pt 2): 134355, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089543

ABSTRACT

Toward the development of a sustainable utilization strategy for adsorption materials, a starch-based adsorbent starch-chitosan-tannic acid (St-CTS-TA) with a three-dimensional (3D) structure was fabricated in water via electrostatic and hydrogen bonding reactions between St, CTS, and TA without using toxic reducing agents or special instruments. St-CTS-TA demonstrated a high specific surface area of 37 m2/g as well as a mesoporous/macroporous distribution ranging from 30 to 80 nm, which enhanced the mass transfer of adsorbate and the exposure of catechol groups in TA. The Langmuir isotherm adsorption model revealed that the highest adsorption capacities of St-CTS-TA for Fe3+ and Co2+ were 1678.2 and 944.8 mg/g, respectively. Surprisingly, the specific surface area of St-CTS-TA increased from 37 to 87 and 42 m2/g after Fe3+ and Co2+ adsorption, respectively, and the resulting St-CTS-TA-Fe and St-CTS-TA-Co could continuously adsorb basic fuchsin (BF) and rhodamine B (RhB). The adsorption capacities of St-CTS-TA-Fe and St-CTS-TA-Co for BF/RhB were found to be 1854.79/401.19 mg/g and 2229.77/537.49 mg/g, respectively, based on the Langmuir isotherm adsorption model.


Subject(s)
Chitosan , Nanostructures , Starch , Adsorption , Starch/chemistry , Nanostructures/chemistry , Chitosan/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Porosity , Rhodamines
17.
Front Med ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115794

ABSTRACT

With the successive release of the CONSORT extensions for acupuncture, moxibustion, cupping, and Tuina/massage, this review aims to assess the reporting characteristics and quality of randomized controlled trials (RCTs) based on these specific guidelines. A comprehensive review was conducted by searching multiple databases, including Embase, Ovid MEDLINE(R), All EBM Reviews, AMED, CNKI, VIP Chinese Medical Journal Database, and Wanfang Data, for publications from January 1 to December 31, 2022. Two reviewers independently evaluated the eligibility of the records, extracted predetermined information, and assessed the reporting based on the STRICTA, STRICTOM, STRICTOC, and STRICTOTM checklists. Among the included 387 studies (acupuncture, 213; Tuina/massage, 85; moxibustion, 73; cupping, 16), the overall reporting compliance averaged 56.0%, with acupuncture leading at 62.6%, followed by cupping (60.2%), moxibustion (53.1%), and Tuina/massage (47.9%). About half of the evaluated items showed poor reporting (compliance rate < 65%). Notably, international journals demonstrated significantly higher reporting quality than Chinese journals (P < 0.05). Although acupuncture trials had relatively higher compliance rates, deficiencies persist in reporting non-pharmacological therapies of Chinese medicine, particularly in areas like treatment environment details and provider background information.

18.
Langmuir ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190451

ABSTRACT

Deformation of sessile droplets under shear flow is widespread in both nature and industry. Previous research focuses on the shedding process of sessile droplets under shear airflow, with insufficient attention paid to the droplet deformation before shedding. In this work, experimental studies on the deformation behaviors of sessile droplets under shear airflow are conducted to investigate the effects of airflow velocity and droplet volume on the tangential and normal droplet deformations. Scaling laws of the droplet deformations are established. The results show that the profile of sessile droplets changes under shear airflow with the topmost point exhibiting periodic oscillations in both tangential and normal directions. The oscillation period of the tangential deformation exceeds that of the normal deformation. The average tangential deformation of droplets increases with the increasing airflow velocity and droplet volume. The average normal deformation of droplets increases with the increasing airflow velocity and is influenced by the droplet volume at a higher airflow velocity. The contact angle on the windward side oscillates periodically, and its average value significantly decreases. The contact angle of droplets on the windward side decreases as the airflow velocity and droplet volume increase, while the contact angle on the leeward side remains almost unchanged. The average deformation of droplets in the tangential and normal directions is linearly related to the effective Weber number and the square of the effective Weber number. These findings could be used to predict the deformation of sessile droplets under shear airflows.

19.
Eur J Pharm Biopharm ; : 114464, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181416

ABSTRACT

To improve the solubility of the fluoroquinolone drug fleroxacin (FL), based on the previous experience of our research group in synthesizing co-crystals/salts of quinolone drugs to improve the physicochemical properties of drugs, Fleroxacin-D-tartaric acid dihydrate salt (FL-D-TT, C17H19F3N3O3·C4H5O6·2(H2O)), was synthesized for the first time using fleroxacin and D/L-tartaric acid (D/L-TT). Structural characterization of FL-D-TT was carried out using single-crystal X-ray diffraction, infrared spectral analysis (FT-IR) and powder X-ray diffraction (PXRD). Molecular electrostatic potential analysis showed that D-tartaric acid interacted more readily with FL than L-tartaric acid. The solubility of FL-D-TT (9.71 mg/mL, 1.82 mg/mL) was significantly higher compared to FL (0.39 mg/mL, 0.71 mg/mL) in water and buffer solution at pH 7.4. This may be attributed to the formation of charge-assisted hydrogen bonds (CAHBs) between FL and D-TT that facilitates the dissociation of FL cations in the dissolution medium, leading to an increase in FL solubility. This also led to some improvement in the in vitro antimicrobial activity of FL-D-TT against E. coli, S. typhi, and S. aureus. In addition, the hygroscopic stability of FL has been improved. Surprisingly, FL-D-TT had better photostability than FL, which could be attributed to the introduction of D-TT to make the photosensitizing moiety of FL more stable, which led to the improvement of the photostability of FL.

20.
Plant Physiol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158082

ABSTRACT

Karyotypes provide key cytogenetic information on phylogenetic relationships and evolutionary origins in related plant species. The St genome of Pseudoroegneria contributes to eight alloploid genera, representing over half of the species that are highly valuable for wheat (Triticum aestivum) breeding and for understanding Triticeae species evolution. However, St chromosome characterization is challenging due to limited cytogenetic markers and DNA information. We developed a complete set of St genome-specific chromosome painting probes for identification of the individual chromosomes 1St to 7St based on the genome sequences of Pse. libanotica and wheat. We revealed the conservation of St chromosomes in St-containing species by chromosome painting, including Pseudoroegneria, Roegneria, Elymus, and Campeiostachys. Notably, the Y genome showed hybridization signals, albeit weaker than those of the St genome. The awnless species harboring the Y genome exhibited more intense hybridization signals compare to the awned species in Roegneria and Campeiostachys, yet weaker than the hybridization signals of the St genome in autotetraploid Pse. strigosa. Although awnless species were morphologically more similar to each other, phenotypic divergence progressively increased from awnless to awned species. Our results indicate that the Y genome originated from the St genome and shed light on the possible origin of the Roegneria and Campeiostachys species, enhancing our understanding of St-genome-containing species evolution.

SELECTION OF CITATIONS
SEARCH DETAIL