Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541411

ABSTRACT

Ce-doped gadolinium gallium aluminum oxide (Ce: GGAG) precursors were first prepared by the microwave-assisted homogeneous precipitation method (MAHP). Thermal gravity-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), specific surface area analysis (BET) and field emission scanning electron microscopy (FE-SEM) were employed to investigate the crystal structure, phase evolution and morphologies of the Ce: GGAG precursors and powders. The influence of Ga ion concentration in the salt solution on the properties of Ce: GGAG powders was investigated. All the precursors were transformed into single-phase GGAG after being calcined at 950 °C in a furnace for 3 h. Monodispersed Ce: GGAG powders were obtained as the Ga ion concentration was lower than 0.06 mol/L. Single-phase and dense Ce: GGAG ceramics were obtained after sintering at 1600 °C in a flowing oxygen atmosphere for 10 h. Specifically, the Ce: GGAG ceramic reached its maximum density of ~6.68 g/cm3, which was close to its theoretical density of 6.70 g/cm3, and exhibited the highest optical transmittance of 65.2% at 800 nm after hot isostatic pressing sintering (HIP) as the Ga ion concentration was 0.02 mol/L. The decay time and light yield of the GGAG ceramic were 35 ns and 35,000 ± 1250 ph/MeV, respectively, suggesting that Ce: GGAG ceramics prepared using MAHP-synthesized nanopowders are promising for scintillation applications.

2.
Ecotoxicol Environ Saf ; 141: 139-147, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28340369

ABSTRACT

Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (kobs) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO3- or Cl-) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO4•- or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal.


Subject(s)
Diclofenac/analysis , Sulfates/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods , Chromatography, Liquid , Diclofenac/chemistry , Diclofenac/toxicity , Kinetics , Oxidation-Reduction , Sulfates/radiation effects , Tandem Mass Spectrometry , Vibrio/drug effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
3.
Environ Sci Pollut Res Int ; 24(9): 8469-8478, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28188554

ABSTRACT

Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br- on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA254) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br-. When the concentration of Br- was 500 µg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br- increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.


Subject(s)
Disinfection , Microcystis , Bromides/chemistry , Halogenation , Hydrocarbons, Chlorinated
4.
Chemosphere ; 165: 381-387, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27677119

ABSTRACT

This study investigated the electrochemical degradation of microcystin-LR (MC-LR) using boron-doped diamond (BDD) anode and mixed metal oxides (MMO, IrO2Ta2O5/Ti) anode in different medium. In-situ electrogenerated oxidants including hydroxyl radical, active chlorine, and persulfate were confirmed in phosphate, chloride, and sulfate medium, respectively. Different from MMO anode, hydroxyl radical was observed to play a significant role in chlorine generation at BDD anode in chloride medium. Besides, BDD anode could activate sulfate electrochemically due to its high oxygen evolution potential, and MC-LR degradation rate increased with the decrease of solution pH. The effects of natural organic matters (NOM) and algal organic matters (AOM) on MC-LR degradation were evaluated and NOM presented stronger inhibition ability than AOM. Furthermore, the intermediates generated in MC-LR degradation in chloride and sulfate medium were identified by LC/MS/MS and possible degradation pathways were proposed based on the experiments results. Benzene ring and conjugated diene bonds of Adda group and double bonds of Mhda group were found to be the reactive sites of MC-LR. Overall, this study broadens the knowledge of electrochemical oxidation in removing microcystins in algae-laden water.


Subject(s)
Boron Compounds/chemistry , Cyanobacteria/metabolism , Electrochemical Techniques , Microcystins/chemistry , Oxidants/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Diamond/chemistry , Electrodes , Hydroxyl Radical/chemistry , Marine Toxins , Oxidation-Reduction , Sulfates/chemistry , Tandem Mass Spectrometry , Water/chemistry
5.
Chemosphere ; 161: 400-411, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27448753

ABSTRACT

This study demonstrates the use of MIEX resin as an efficient adsorbent for the removal of clofibric acid (CA) and diclofenac (DCF). The adsorption performance of CA and DCF are investigated by a batch mode in single-component or bi-component adsorption system. Various factors influencing the adsorption of CA and DCF, including initial concentration, contact time, adsorbent dosage, initial solution pH, agitation speed, natural organic matter and coexistent anions are studied. The Langmuir model can well describe CA adsorption in single-component system, while the Freundlich model gives better fitting in bi-component system. The DCF adsorption can be well fitted by the Freundlich model in both systems. Thermodynamic analyses show that the adsorption of CA and DCF is an endothermic (ΔH(o) > 0), entropy driven (ΔS(o) > 0) process and more randomness exists in the DCF adsorption process. The values of Gibbs free energy (ΔG(o) < 0) indicate the adsorption of DCF is spontaneous but nonspontaneous (ΔG(o) > 0) for CA adsorption. The kinetic data suggest the adsorption of CA and DCF follow the pseudo-first-order model in both systems and the intra-particle is not the unique rate-limiting step. The adsorption process is controlled simultaneously by external mass transfer and surface diffusion according to the surface diffusion modified Biot number (Bis) ranging from 1.06 to 26.15. Moreover, the possible removal mechanism for CA and DCF is respectively proposed based on the ion exchange stoichiometry.


Subject(s)
Clofibric Acid/chemistry , Diclofenac/chemistry , Ion Exchange Resins/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Ion Exchange , Kinetics , Temperature , Thermodynamics , Water Purification/methods
6.
Environ Sci Pollut Res Int ; 22(11): 8693-701, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25567063

ABSTRACT

UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 (-), Cl(-), and HCO3 (-)), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3 (-) > Cl(-) > NO3 (-). Coexisting ferrous ions enhanced FLO degradation at a Fe(2+)/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.


Subject(s)
Anti-Bacterial Agents , Sodium Compounds/chemistry , Sulfates/chemistry , Thiamphenicol/analogs & derivatives , Ultraviolet Rays , Water Pollutants, Chemical , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Bicarbonates/chemistry , Chlorides/chemistry , Humic Substances , Hydrogen Peroxide/chemistry , Iron/chemistry , Nitrates/chemistry , Oxidants/chemistry , Photolysis , Thiamphenicol/chemistry , Thiamphenicol/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL