Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
New Phytol ; 243(3): 936-950, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831647

ABSTRACT

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Subject(s)
Bacterial Proteins , Carbon , Glycosyltransferases , Synechocystis , Uridine Diphosphate N-Acetylglucosamine , Synechocystis/metabolism , Synechocystis/genetics , Synechocystis/growth & development , Carbon/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Uridine Diphosphate N-Acetylglucosamine/metabolism , Gene Expression Regulation, Bacterial , Gene Deletion
2.
Mol Plant ; 17(1): 199-213, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38018035

ABSTRACT

Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis. To this end, we developed a method with a streamlined workflow for highly efficient purification of phosphopeptides from tissues of various green organisms including Arabidopsis, rice, tomato, and Chlamydomonas reinhardtii, enabling in-depth identification with high quantitative reproducibility of about 11 000 phosphosites, the greatest depth achieved so far with single liquid chromatography-mass spectrometry (LC-MS) runs operated in a data-dependent acquisition (DDA) mode. The mainstay features of the method are the minimal sample loss achieved through elimination of sample clean-up before protease digestion and of desalting before phosphopeptide enrichment and hence the dramatic increases of time- and cost-effectiveness. The method, named GreenPhos, combined with single-shot LC-MS, enabled in-depth quantitative identification of Arabidopsis phosphoproteins, including differentially phosphorylated spliceosomal proteins, at multiple time points during salt stress and a number of kinase substrate motifs. GreenPhos is expected to serve as a universal method for purification of plant phosphopeptides, which, if samples are further fractionated and analyzed by multiple LC-MS runs, could enable measurement of plant phosphoproteomes with an unprecedented depth using a given mass spectrometry technology.


Subject(s)
Arabidopsis , Animals , Arabidopsis/metabolism , Phosphopeptides/analysis , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Tandem Mass Spectrometry/methods , Reproducibility of Results , Phosphorylation , Phosphoproteins/metabolism
3.
Mol Cell Proteomics ; 22(7): 100582, 2023 07.
Article in English | MEDLINE | ID: mdl-37225018

ABSTRACT

Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.


Subject(s)
Carbon , Synechocystis , Phosphorylation , Carbon/metabolism , Proteomics , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycogen/metabolism , Nitrogen , Gene Expression Regulation, Bacterial
4.
J Proteome Res ; 22(4): 1255-1269, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36930737

ABSTRACT

Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.


Subject(s)
Iron Deficiencies , Synechocystis , Humans , Proteome/genetics , Proteome/metabolism , Stress, Physiological , Synechocystis/genetics , Synechocystis/metabolism , Nitrogen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Mol Cell Proteomics ; 21(12): 100440, 2022 12.
Article in English | MEDLINE | ID: mdl-36356940

ABSTRACT

Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.


Subject(s)
Photosystem II Protein Complex , Synechocystis , Photosystem II Protein Complex/metabolism , Proteome/metabolism , Oxygen/metabolism , Photosystem I Protein Complex/metabolism , Synechocystis/metabolism
6.
J Genet Genomics ; 49(2): 96-108, 2022 02.
Article in English | MEDLINE | ID: mdl-34775074

ABSTRACT

Cyanobacteria are a group of oxygenic photosynthetic bacteria with great potentials in biotechnological applications and advantages as models for photosynthesis research. The subcellular localizations of the majority of proteins in any cyanobacteria remain undetermined, representing a major challenge in using cyanobacteria for both basic and industrial researches. Here, using label-free quantitative proteomics, we map 2027 proteins of Synechocystis sp. PCC6803, a model cyanobacterium, to different subcellular compartments and generate a proteome atlas with such information. The atlas leads to numerous unexpected but important findings, including the predominant localization of the histidine kinases Hik33 and Hik27 on the thylakoid but not the plasma membrane. Such information completely changes the concept regarding how the two kinases are activated. Together, the atlas provides subcellular localization information for nearly 60% proteome of a model cyanobacterium, and will serve as an important resource for the cyanobacterial research community.


Subject(s)
Proteome , Synechocystis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Synechocystis/genetics , Synechocystis/metabolism
7.
ACS Omega ; 7(51): 47806-47811, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591174

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS) is a major tool for the large-scale qualitative and/or quantitative analysis of protein phosphorylation in cells or tissues. The performance of LC is pivotal for the success of phosphoproteomics in both sensitivity and reproducibility. Here, we report that the widely used Easy-nLC 1200 has poor performance in analyzing phosphopeptides, particularly in terms of sensitivity and reproducibility, whereas its predecessor, Easy-nLC 1000, has a much better performance. Therefore, we suggest that Easy-nLC 1200 is not appropriate for LC-MS-based proteomics analysis for samples with a limited amount, particularly phosphopeptides from plants.

8.
Methods Mol Biol ; 2358: 145-157, 2021.
Article in English | MEDLINE | ID: mdl-34270052

ABSTRACT

Protein phosphorylation plays important roles in the regulation of plant growth and development as well as adaption to changing environments. Large-scale identification of the phosphorylated proteins could provide both a global view of and specific targets involved in the mechanism underlying these processes. The progress of phosphoproteomic study for higher plants has lagged behind that of animals due to technical challenges, particularly the difficulty in solubilizing proteins from plant tissues with a rigid cell wall and the interference of the secondary metabolites, polysaccharides, and pigments throughout the whole processes of sample preparation and LC-MS analysis. Thus, it is critical to improve the efficiency of protein extraction and to remove the interfering metabolites before phosphopeptides enrichment. Here we describe a protocol for plant protein extraction and phosphopeptides enrichment by Fe3+-immobilized metal ion affinity chromatography (Fe3+-IMAC). Strong detergents such as SDS were used to extract proteins from plant tissues, and the secondary metabolites were removed by protein precipitation and washing of the pellets. The protein samples were digested and the resulting peptides were prefractionated. Phosphopeptides enriched from each fraction were combined before analysis with LC-MS.


Subject(s)
Chromatography, Affinity , Animals , Mass Spectrometry , Phosphopeptides , Plant Proteins
9.
Proteomics ; 20(12): e1900255, 2020 06.
Article in English | MEDLINE | ID: mdl-32419311

ABSTRACT

The recent development and implementation of the advanced peak determination (APD) algorithm with MS instrument dramatically increased the sampling of low abundance features for MS/MS fragmentation. After in-depth evaluation, it is found that with APD on, many chimeric spectra are acquired through co-fragmentation of high abundance contaminants with low abundance targets, and such co-fragmentations are largely avoided when APD is off. To evaluate whether such a co-fragmentation could significantly distort the accuracy of the isobaric-labeling based quantitation of the low abundance target, a single-shot TMT experiment is performed using a two-proteome model, whereby each TMT channel contains premixed peptides from human and a cyanobacterium with a known ratio. Unexpectedly, it is found that APD does not significantly distort TMT ratios, probably because the majority of the APD-specific chimeric spectra are not identifiable. Nevertheless, a few examples of significant distortion of TMT ratios of low abundance peptides caused by APD is found through manual inspection, and suggests that APD should be off in a single-shot TMT experiment to avoid the laborious and time-costing manual inspection.


Subject(s)
Isotope Labeling/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Chromatography, Liquid/methods , HEK293 Cells , Humans , Peptides/metabolism , Proteome/metabolism , Reproducibility of Results , Synechocystis/metabolism , Tandem Mass Spectrometry/methods
10.
Yi Chuan ; 41(9): 863-874, 2019 Sep 20.
Article in Chinese | MEDLINE | ID: mdl-31549684

ABSTRACT

Membrane proteins play important functions not only as receptors and transporters, but also in many other important intracellular functions such as photosynthetic and respiratory electron transport. Identification of membrane proteins is a necessary step to understand their functions. Membrane proteins are generally highly hydrophobic and difficult to be resolved by aqueous solutions, and large-scale proteomic identification of membrane proteins has been a great technical challenge. Significant efforts have been invested in the field to improve the solubility of membrane proteins in aqueous solutions that are compatible for mass spectrometry analysis. This review summarizes the main technological achievements in the field of membrane proteomics particularly for the improvement of membrane protein identification, and uses the photosynthetic model cyanobacterium Synechocystis sp. PCC6803 as an example to illustrate how technology advances push forward the field in terms of the increased coverage of membrane proteome identification.


Subject(s)
Proteome , Proteomics/trends , Synechocystis/genetics , Bacterial Proteins/genetics , Mass Spectrometry
11.
Biochem J ; 476(13): 1911-1926, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31196894

ABSTRACT

The mitogen-activated protein kinase ERK1/2 (ERKs, extracellular-regulated protein kinases) plays important roles in a wide spectrum of cellular processes and have been implicated in many disease states. The spatiotemporal regulation of ERK activity has been extensively studied. However, scarce information has been available regarding the quality control of the kinases to scavenge malfunctioning ERKs. Using site-specific mutagenesis and mass spectrometry, we found that the disruption of the conserved H-bond between Y210 and E237 of ERK1 through point mutation at or naturally occurring nitration on Y210 initiates a quality control program dependent on chaperon systems and CHIP (C-terminal of Hsp70-interacting protein)-mediated ubiquitination and degradation. The H-bond is also important for the quality control of ERK2, but through a distinct mechanism. These findings clearly demonstrate how malfunctioning ERKs are eliminated when cells are in certain stress conditions or unhealthy states, and could represent a general mechanism for scavenging malfunctioning kinases in stress conditions.


Subject(s)
MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , HEK293 Cells , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mutagenesis, Site-Directed , Mutation, Missense , Point Mutation , Ubiquitin-Protein Ligases/genetics
12.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31053472

ABSTRACT

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Subject(s)
AMP-Activated Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium/metabolism , DNA Repair Enzymes/genetics , DNA Repair , DNA Replication , Exodeoxyribonucleases/genetics , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Calcium Signaling/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Chromatin/chemistry , Chromatin/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Proteomics ; 18(20): e1800046, 2018 10.
Article in English | MEDLINE | ID: mdl-30194912

ABSTRACT

The histidine kinase Hik33 plays a central role in acclimation to changing environments in cyanobacteria. Deletion of hik33 induces a strong stress-like response in Synechocystis sp. PCC 6803 (Synechocystis) as represented by repressed photoautotrophic growth and photosynthesis, and differential expression of stress-responsive proteins. In contrast, the photomixotrophic growth of the hik33-deletion mutant (Δhik33) with glucose as the exogenous carbon source is only marginally repressed. To investigate how glucose rescues the growth of Δhik33, the proteomes of the photomixotrophically growing wild-type (WT) and the mutant strains of Synechocystis are quantitatively analyzed. It is found that glucose induces upregulation of the oxidative pentose phosphate (OPP) pathway. Depletion of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the first and the rate-limiting step of the OPP pathway, significantly inhibits the photomixotrophic growth of Δhik33 but not of the WT. The result suggests that the OPP pathway, which is usually nonfunctional in the photomixotrophically growing WT, plays a major role in the photomixotrophic growth of Δhik33.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glucose/pharmacology , Mutation , Pentose Phosphate Pathway , Sequence Deletion , Synechocystis/growth & development , Bacterial Proteins/genetics , Oxidative Stress , Photosynthesis , Synechocystis/drug effects , Synechocystis/genetics , Synechocystis/metabolism
14.
J Proteomics ; 179: 100-109, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29545168

ABSTRACT

Differential expression of cold-responsive proteins is necessary for cyanobacteria to acclimate to cold stress frequently occurring in their natural habitats. Accumulating evidence indicates that cold-induced expression of certain proteins is dependent on light illumination, but a systematic identification of light-dependent and/or light-independent cold-responsive proteins in cyanobacteria is still lacking. Herein, we comprehensively identified cold-responsive proteins in a model cyanobacterium Synechocystis sp. PCC 6803 (Hereafter Synechocystis) that was cold-stressed in light or in dark. In total, 72 proteins were identified as cold-responsive, including 19 and 17 proteins whose cold-responsiveness are light-dependent and light-independent, respectively. Bioinformatic analysis revealed that outer membrane proteins, proteins involved in translation, and proteins involved in divergent types of stress responses were highly enriched in the cold-responsive proteins. Moreover, a protein network responsible for nitrogen assimilation and amino acid biosynthesis, transcription, and translation were upregulated in response to the cold stress. The network contains both light-dependent and light-independent cold-responsive proteins, probably for fine tuning its activity to endow Synechocystis the flexibility necessary for cold adaptation in their natural habitats, where days and nights are alternating. Together, our results should serve as an important resource for future study toward understanding the mechanism of cold acclimation in cyanobacteria. SIGNIFICANCE: Photosynthetic cyanobacteria need to acclimate to frequently occurring abiotic stresses such as cold in their natural habitats, and the acclimation process has to be coordinated with photosynthesis, the light-dependent process that provides carbon and energy for propagation of cyanobacteria. It is conceivable that cold-induced differential protein expression can also be regulated by light. Hence it is important to systematically identify cold responsive proteins that are regulated or not regulated by light to better understand the mechanism of cold acclimation in cyanobacteria. In this manuscript, we identified a network involved in protein synthesis that were upregulated by cold. The network contains both light-dependent and light-independent cold-inducible proteins, presumably for fine tuning the activity of the network in natural habitats of cyanobacteria where days and nights are alternating. This finding underscores the significance of proteome reprograming toward enhancing protein synthesis in cold adaptation.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Cold-Shock Response , Light , Proteome/metabolism , Synechocystis/metabolism
15.
Antiviral Res ; 147: 75-85, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988797

ABSTRACT

Our previous OSST study shows that switching to pegylated interferon (Peg-IFN)-α2a results in higher rates of response hepatitis B e antigen (HBeAg) seroconversion and hepatitis B surface antigen (HBsAg) loss at the end of treatment, compared with nucleot(s)ide analogues (NAs) monotherapy in long term NA-treated chronic hepatitis B (CHB) patients. In order to characterize the correlation between Peg-IFN-α antiviral effect and IFN-inducing signaling in CHB patients who switched to Peg-IFN from long time entecavir (ETV) treatment, we investigated the dynamic expression of interferon-stimulated genes (ISGs), including STAT1, MX, and a negative regulatory factor, suppressor of cytokine signaling 3(SOCS3), which negatively regulate IFN JAK-STAT signaling pathway by interacting with STAT1 and STAT2, in peripheral blood and paired liver samples, obtained from 54 CHB patients enrolled in a clinical trial, OSST study. In Peg-IFN group, responders showed a more significant decline in HBsAg, compared with non-responders. Following the treatment, peripheral blood and hepatic STAT1 and MX expression levels were higher in Peg-IFN responders, while SOCS3 expression was higher in non-responders. Fold induction of STAT1 at week 4 and MX at week 12 in PBMCs directly correlated with HBsAg decline at week 48 relative to the baseline. Responders showed a significantly increased activation and nuclear localization of phospho-STAT1 following Peg-IFN treatment, compared with non-responders in liver. Whereas, non-responders exhibited significantly higher hepatic expression of SOCS3 before the treatment compared with the responders and even higher expression levels after the treatment compared with the baseline, which may be involved in the mechanism of IFN resistance.


Subject(s)
Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/drug therapy , Interferon-alpha/pharmacology , Myxovirus Resistance Proteins/genetics , Polyethylene Glycols/pharmacology , STAT1 Transcription Factor/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Up-Regulation/drug effects , Adult , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Female , Guanine/analogs & derivatives , Guanine/pharmacology , Guanine/therapeutic use , Hepatitis B Surface Antigens/drug effects , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/pathology , Humans , Interferon-alpha/therapeutic use , Leukocytes, Mononuclear/drug effects , Liver/drug effects , Liver/pathology , Male , Phosphorylation/drug effects , Polyethylene Glycols/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , STAT1 Transcription Factor/metabolism , Seroconversion/drug effects , Time Factors , Treatment Outcome , Young Adult
16.
Mol Cell Proteomics ; 16(7): 1258-1274, 2017 07.
Article in English | MEDLINE | ID: mdl-28668777

ABSTRACT

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly like that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found most proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.


Subject(s)
Bacterial Proteins/metabolism , Histidine Kinase/genetics , Proteomics/methods , Synechocystis/metabolism , Carbon/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/metabolism , Microbial Viability , Mutation , Photosynthesis , Stress, Physiological , Synechocystis/genetics
17.
Mol Cell Proteomics ; 2017 May 12.
Article in English | MEDLINE | ID: mdl-28500030

ABSTRACT

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.

18.
PLoS Biol ; 14(9): e1002550, 2016 09.
Article in English | MEDLINE | ID: mdl-27618482

ABSTRACT

Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , MAP Kinase Kinase 7/metabolism , Membrane Transport Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Shoots/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Indoleacetic Acids/metabolism , MAP Kinase Kinase 7/chemistry , MAP Kinase Signaling System , Membrane Transport Proteins/chemistry , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/chemistry , Phosphorylation , Plant Development , Plant Shoots/growth & development , Protein Processing, Post-Translational , Protein Transport
19.
Sci Rep ; 6: 31811, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27554326

ABSTRACT

Protein tyrosine phosphorylation is an important mechanism that regulates cytoskeleton reorganization and cell spreading of migratory cells. A number of cytoskeletal proteins are known to be tyrosine phosphorylated (pY) in different cellular processes. However, the profile of pY proteins during different stages of cell spreading has not been available. Using immunoafffinity enrichment of pY proteins coupled with label free quantitative proteomics, we quantitatively identified 447 pY proteins in the migratory ECV-304 cells at the early spreading (adhesion) and the active spreading stages. We found that pY levels of the majority of the quantified proteins were significantly increased in the active spreading stage compared with the early spreading stage, suggesting that active cell spreading is concomitant with extra tyrosine phosphorylation. The major categories of proteins impacted by tyrosine phosphorylation are involved in cytoskeleton and focal adhesion regulation, protein translation and degradation. Our findings, for the first time, dissect the cell spreading-specific pY signals from the adhesion induced pY signals, and provide a valuable resource for the future mechanistic research regarding the regulation of cell spreading.


Subject(s)
Cytoskeleton/metabolism , Focal Adhesions/metabolism , Protein-Tyrosine Kinases/metabolism , Proteomics/methods , Cell Adhesion , Cell Line , Cell Movement , Computational Biology/methods , Humans , Phosphorylation , Proteolysis
20.
Biol Chem ; 397(11): 1173-1185, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27276529

ABSTRACT

The protein inhibitor of activated STAT1 (PIAS1) plays important roles in regulating virus-induced chronic hepatitis, but the interaction between hepatitis B virus (HBV) and hPIAS1 is not clear. Our aim was to verify if HBV encoding proteins enhance the transcription of hPIAS1 and which cis-elements and transcription factors were involved in the mechanism. In order to do, so a series of molecular biological methods, along with functional and histological studies, were performed. We found that the HBV surface protein (HBs) enhanced hPIAS1 transcription through the activities of TAL1, E47, myogenin (MYOG), and NFI, dependent on the activation of p38MAPK and ERK signaling pathways in vitro, which might contribute to the ineffectiveness of treatment in CHB patients. Furthermore, liver samples from patients with high HBsAg levels and HBV DNA displayed increased hPIAS1 expression and high levels of TAL1, E47, MYOG, and NFI, compared to those patients with low HBsAg levels and HBV DNA, and healthy controls. These findings suggest that the HBs protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. It provides new potential targets for antiviral therapeutic strategies for controlling HBV-associated diseases.


Subject(s)
Hepatitis B virus/metabolism , MAP Kinase Signaling System , Nuclear Proteins/metabolism , Protein Inhibitors of Activated STAT/genetics , Transcription, Genetic , Viral Envelope Proteins/metabolism , Adult , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CHO Cells , Cricetinae , Cricetulus , Female , Gene Expression Regulation , Gene Knockdown Techniques , Hep G2 Cells , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/physiology , Humans , Male , Mitogen-Activated Protein Kinases/metabolism , Myogenin/genetics , Myogenin/metabolism , NFI Transcription Factors/deficiency , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phosphorylation , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transcription Factor 3/deficiency , Transcription Factor 3/genetics , Transcription Factor 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...