Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10277-10284, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38361486

ABSTRACT

Noncrystalline zeolitic imidazolate frameworks (ZIFs) tethered with ionic liquids (ILs) were successfully employed as catalysts for mild CO2 conversion into cyclic carbonates for the first time. Notably, noncrystalline ZIFs exhibit outstanding catalytic performance in terms of activity, stability, and substrate suitability. Z3 was obtained through the simultaneous incorporation of a boronic acid group and ILs into its ZIF framework and exhibited a superior catalytic activity. A reaction mechanism for the propylene oxide-CO2 cycloaddition has been proposed, which integrates experimental findings with density functional theory calculations. The results indicate that zinc, ILs, and boronic acid play crucial roles in achieving high activity. Zinc and ILs are identified as key contributors to epoxide activation and ring opening, while boronic acid plays a crucial role in stabilizing the turnover frequency-determining transition states. The simplicity of this ZIF synthesis approach, combined with the high activity, stability, and versatility of the products, facilitates practical and efficient conversion of CO2 and epoxides into cyclic carbonates.

2.
Phys Chem Chem Phys ; 26(8): 7109-7123, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38348573

ABSTRACT

Catalytic ethylene dimerization to 1-butene is a crucial reaction in the chemical industry, as 1-butene is used for the production of most common plastics (e.g., polyethylene). With well-defined tuneable structures and unsaturated active sites, defective metal-organic frameworks have recently emerged as potential catalysts for ethylene dimerization. Herein, we computationally design a series of metal hydrides on defective HKUST-1 namely H-M-DHKUST-1 (M: Co, Ni, Cu, Ru, Rh and Pd), and subsequently assess their catalytic activity for ethylene dimerization by density functional theory calculations. Due to the antiferromagnetic behavior of dimeric metal-based clusters, we comprehensively investigate all possible multiplicity states on H-M-DHKUST-1 and observe multiplicity crossing. The ground-state reaction barriers for four elementary steps (initiation, C-C coupling, ß-hydride elimination and 1-butene desorption) are rationalized and C-C coupling is revealed to be the rate-determining step on H-Co-, H-Ni-, H-Ru-, H-Rh- and H-Pd-DHKUST-1. The energy barrier for ß-hydride elimination is found to be the lowest on H-Ru- and H-Rh-DHKUST-1, attributed to the weak stability of agostic arrangement; however, the energy barrier for 1-butene desorption is the highest on H-Rh-DHKUST-1. Among the designed H-M-DHKUST-1, Co- and Ni-based ones are predicted to exhibit the best overall catalytic performance. The mechanistic insights from this study may facilitate the development of new MOFs toward efficient ethylene dimerization and other industrially important reactions.

3.
Small ; : e2310856, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377308

ABSTRACT

Semiconductor photocatalysts, such as TiO2 and ZnO, have garnered significant attention for their ability to generate hydroxyl radicals, offering various practical applications. However, the reliance on UV light to facilitate electron-hole separation for hydroxyl radical production poses limitations. In this study, a novel approach is presented utilizing Zn@Fe core/shell particles capable of generating hydroxyl radicals without external energy input. The generation process involves electron donation from Zn to O2 , resulting in the formation of radical species . O2 - /H2 O2 , followed by Fe-catalyzed conversion of H2 O2 into hydroxyl radicals through the Fenton reaction. The release of . OH imparts good antimicrobial and antiviral properties to the Zn@Fe particles. Furthermore, the inclusion of Fe confers magnetic properties to the material. This dual functionality holds promise for diverse potential applications for the Zn@Fe particles.

4.
J Am Chem Soc ; 146(1): 599-608, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38109168

ABSTRACT

The rapid development of antimicrobial resistance (AMR) among infectious pathogens has become a major threat and challenge in healthcare systems globally. A strategy distinct from minimizing the overuse of antimicrobials involves the development of novel antimicrobials with a mode of action that prevents the development of AMR microbial strains. Reactive oxygen species (ROS) are formed as a natural byproduct of the cellular aerobic metabolism. However, it becomes pathological when ROS is produced at excessive levels. Exploiting this phenomenon, research on redox-active bactericides has been demonstrated to be beneficial. Materials that release ROS via photodynamic, thermodynamic, and photocatalytic interventions have been developed as nanomedicines and are used in various applications. However, these materials require external stimuli for ROS release to be effective as biocides. In this paper, we report novel zinc-based metal organic framework (Zn@MOF) particles that promote the spontaneous release of active ROS species. The synthesized Zn@MOF spontaneously releases superoxide anions and hydrogen peroxide, exhibiting a potent antimicrobial efficacy against various microbes. Zn@MOF-incorporated plastic films and coatings show excellent, long-lasting antimicrobial potency even under continuous microbial challenge and an aging process. These disinfecting surfaces maintain their antimicrobial properties even after 500× surface wipes. Zn@MOF is also biocompatible and safe on the skin, illustrating its broad potential applications in medical technology and consumer care applications.


Subject(s)
Anti-Infective Agents , Metal-Organic Frameworks , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/metabolism , Zinc , Oxidation-Reduction
5.
ChemSusChem ; 16(16): e202301123, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605338

ABSTRACT

Invited for this month's cover is the group of Ning Yan at the National University of Singapore. The image shows the production of modified oligosaccharides from marine biomass as powerful antimicrobial 'weapon' through the 'booster' made of formaldehyde. The Research Article itself is available at 10.1002/cssc.202300591.

6.
Chemistry ; 29(54): e202301279, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37424192

ABSTRACT

Zero-linker ligands have maximized the size coordination efficiency of the metal ions in MOF framework which is important in constructing ultra-microporous MOFs with high stability and density, a bridge between zeolites and traditional MOFs. This article highlighted several recently developed ultra-microporous MOFs with zero-linker ligands for gas capture and separation.

7.
ChemSusChem ; 16(16): e202300591, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37332174

ABSTRACT

Chitosan oligosaccharide and its derivatives are known for their diverse biological activities. In this study, we communicate a convenient one-pot synthesis of N,N-dimethyl chitosan oligosaccharide (DMCOS) from chitin via acid-catalyzed tandem depolymerization-deacetylation-N-methylation pathway using formaldehyde as the methylation reagent. The synthesis protocol offers 77 % DMCOS that features a high degree of deacetylation, a high degree of methylation, and a low average molecular weight. Compared to chitosan, DMCOS exhibits superior antifungal activity against Candida species. Mechanism study reveals a previously non-reported hydroxyl group-assisted effect that facilitates the reductive amination reaction under strong acidic conditions. Overall, our findings demonstrate the feasibility of direct synthesis of DMCOS from chitin, highlighting its potential use in anti-fungal applications.


Subject(s)
Chitin , Chitosan , Chitosan/metabolism , Antifungal Agents/pharmacology , Oligosaccharides/metabolism
8.
J Immunol ; 211(3): 389-402, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37272847

ABSTRACT

The impact of endemic parasitic infection on vaccine efficacy is an important consideration for vaccine development and deployment. We have examined whether intestinal infection with the natural murine helminth Heligmosomoides polygyrus bakeri alters Ag-specific Ab and cellular immune responses to oral and parenteral vaccination in mice. Oral vaccination of mice with a clinically relevant, live, attenuated, recombinant Salmonella vaccine expressing chicken egg OVA (Salmonella-OVA) induced the accumulation of activated, OVA-specific T effector cells rather than OVA-specific regulatory T cells in the GALT. Intestinal helminth infection significantly reduced Th1-skewed Ab responses to oral vaccination with Salmonella-OVA. Activated, adoptively transferred, OVA-specific CD4+ T cells accumulated in draining mesenteric lymph nodes of vaccinated mice, regardless of their helminth infection status. However, helminth infection increased the frequencies of adoptively transferred OVA-specific CD4+ T cells producing IL-4 and IL-10 in the mesenteric lymph node. Ab responses to the oral Salmonella-OVA vaccine were reduced in helminth-free mice adoptively transferred with OVA-specific CD4+ T cells harvested from mice with intestinal helminth infection. Intestinal helminth infection also significantly reduced Th2-skewed Ab responses to parenteral vaccination with OVA adsorbed to alum. These findings suggest that vaccine-specific CD4+ T cells induced in the context of helminth infection retain durable immunomodulatory properties and may promote blunted Ab responses to vaccination. They also underscore the potential need to treat parasitic infection before mass vaccination campaigns in helminth-endemic areas.


Subject(s)
Helminthiasis , Intestinal Diseases, Parasitic , Mice , Animals , Vaccine Efficacy , CD4-Positive T-Lymphocytes , Vaccines, Synthetic , Ovalbumin , Mice, Inbred BALB C
9.
Front Immunol ; 13: 974374, 2022.
Article in English | MEDLINE | ID: mdl-36248809

ABSTRACT

Background: 10% of US residents have food allergies, including 2% with peanut allergy. Mast cell mediators released during the allergy effector phase drive allergic reactions. Therefore, targeting sensitized mast cells may prevent food allergy symptoms. Objective: We used novel, human, allergen-specific, IgE monoclonal antibodies (mAbs) created using human hybridoma techniques to design an in vitro system to evaluate potential therapeutics targeting sensitized effector cells. Methods: Two human IgE mAbs specific for peanut, generated through human hybridoma techniques, were used to sensitize rat basophilic leukemia (RBL) SX-38 cells expressing the human IgE receptor (FcϵRI). Beta-hexosaminidase release (a marker of degranulation), cytokine production, and phosphorylation of signal transduction proteins downstream of FcϵRI were measured after stimulation with peanut. Degranulation was also measured after engaging inhibitory receptors CD300a and Siglec-8. Results: Peanut-specific human IgE mAbs bound FcϵRI, triggering degranulation after stimulation with peanut in RBL SX-38 cells. Sensitized RBL SX-38 cells stimulated with peanut increased levels of phosphorylated SYK and ERK, signal transduction proteins downstream of FcϵRI. Engaging inhibitory cell surface receptors CD300a or Siglec-8 blunted peanut-specific activation. Conclusion: Allergen-specific human IgE mAbs, expressed from human hybridomas and specific for a clinically relevant food allergen, passively sensitize allergy effector cells central to the in vitro models of the effector phase of food allergy. Peanut reproducibly activates and induces degranulation of RBL SX-38 cells sensitized with peanut-specific human IgE mAbs. This system provides a unique screening tool to assess the efficacy of therapeutics that target allergy effector cells and inhibit food allergen-induced effector cell activation.


Subject(s)
Food Hypersensitivity , Peanut Hypersensitivity , Allergens , Animals , Antibodies, Monoclonal/pharmacology , Arachis , Cell Degranulation , Cytokines , Humans , Immunoglobulin E , Rats , Receptors, IgE/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins , beta-N-Acetylhexosaminidases
10.
Biomaterials ; 284: 121470, 2022 05.
Article in English | MEDLINE | ID: mdl-35349944

ABSTRACT

Bacterial and viral infections are posing a huge burden on healthcare industry. Existing antimicrobial textiles that are used to prevent infection transmission are lack of durability and antiviral activity. Here, we report on silane-functionalized polyionenes-coated cotton textiles with durable potent antimicrobial and antiviral activities. To obtain silane-functionalized polyionenes, silane group-containing monomers were synthesized and used to polymerize with co-monomers. These polyionenes were then conjugated onto the surface of cotton fabrics via covalent bonds. These polymers demonstrated broad-spectrum antimicrobial activity against various types of pathogenic microbes as evidenced by low effective concentration. The fabrics coated with these polymers exhibited potent bactericidal (>99.999%) and virucidal (7-log PFU reduction) activities. In addition, the antimicrobial efficacy was still more than 92% even after 50 times of washing. Evaluation of cytocompatibility and skin compatibility of the polymer-coated cotton fabrics in mice revealed that they were compatible with cells and mouse skin, and neither erythema nor edema was found in the area that was in contact with the polymer-coated fabrics. The silane-functionalized polyionenes are potentially promising antimicrobial and antiviral coating materials for textiles and other applications to prevent microbial and viral infections.


Subject(s)
Anti-Infective Agents , Silanes , Animals , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Mice , Polymers/chemistry , Textiles
11.
Acc Chem Res ; 54(24): 4508-4517, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34874710

ABSTRACT

Self-disinfecting surfaces are a current pressing need for public health and safety in view of the current COVID-19 pandemic, where the keenly felt worldwide repercussions have highlighted the importance of infection control, frequent disinfection, and proper hygiene. Because of its potential impact upon real-world translation into downstream applications, there has been much research interest in multiple disciplines such as materials science, chemistry, biology, and engineering. Various antimicrobial technologies have been developed and currently applied on surfaces in public spaces, such as elevator buttons and escalator handrails. These technologies are mainly based on conventional methods of grafting quaternary ammonium salts (QACs) such as benzalkonium chloride or the immobilization of metal species of silver or copper. However, neither the long-term efficacy nor the fast-killing properties have been proven, and the future repercussions from extended use, such as environmental hazards and the induction of MDR development, is unknown. Nanostructured surfaces with excellent antimicrobial activities have been claimed to be the next generation of self-disinfecting surfaces with various promising applications and passive antimicrobial mechanisms, without the potential repercussions of active ingredient overuse. In this Account, we briefly introduce the concept of mechanobactericidal action realized by these nanostructured surfaces first discovered on cicada wings. The elimination of microbes on the surface was actualized by the physical rupture of the microbe cell wall by nanoprotusions, without any involvement of chemical species. By mimicking the physical features of naturally occurring biocidal surfaces, the fabrication of nanostructures on various substrates such as titania, silicon, and polymers has been well described. Observations of the dependence of their antimicrobial efficacy on physical characteristics such as height, density, and rigidity have also been documented. However, the complex fabrication of such nanostructures remains the main drawback preventing its widespread application. We outline our efforts in fabricating a series of zinc-based nanostructured materials with facile and generally applicable wet chemistry methods, including nanodaggered zeolitic imidazolate frameworks (ZIF-L) and ZnO nanoneedles. In our investigations, we discovered that there were additional modes of action that contributed to the excellent biocidal activities of our materials. The impact of surface chemistry and charge was partially responsible for the selectivity and efficacy of ZIF-L-coated surfaces, where the positively charged surfaces were able to attract and adhere negatively charged bacteria to the surface. The combination of semiconductor ZnO nanoneedles on electron-donating substrates allowed for the generation of reactive oxygen species (ROS), realizing the remote killing of bacteria unadhered to the nanostructured surface. Additionally, we demonstrate several real-life applications of the synthesized materials, underscoring the importance of materials development suited for scale-up and eventual translation to potential applications and commercial end products.


Subject(s)
Anti-Infective Agents , COVID-19 , Nanostructures , Animals , Anti-Infective Agents/pharmacology , Humans , Pandemics , SARS-CoV-2 , Surface Properties
12.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830199

ABSTRACT

Surface antimicrobial materials are of interest as they can combat the critical threat of microbial contamination without contributing to issues of environmental contamination and the development drug resistance. Most nanostructured surfaces are prepared by post fabrication modifications and actively release antimicrobial agents. These properties limit the potential applications of nanostructured materials on flexible surfaces. Here, we report on an easily synthesized plastic material with inherent antimicrobial activity, demonstrating excellent microbicidal properties against common bacteria and fungus. The plastic material did not release antimicrobial components as they were anchored to the polymer chains via strong covalent bonds. Time-kill kinetics studies have shown that bactericidal effects take place when bacteria come into contact with a material for a prolonged period, resulting in the deformation and rupture of bacteria cells. A scanning probe microscopy analysis revealed soft nanostructures on the submicron scale, for which the formation is thought to occur via surface phase separation. These soft nanostructures allow for polyionic antimicrobial components to be present on the surface, where they freely interact with and kill microbes. Overall, the new green and sustainable plastic is easily synthesized and demonstrates inherent and long-lasting activity without toxic chemical leaching.


Subject(s)
Anti-Infective Agents, Local/chemistry , Benzalkonium Compounds/chemistry , Nanostructures/chemistry , Polystyrenes/chemistry , Animals , Anti-Infective Agents, Local/pharmacology , Benzalkonium Compounds/pharmacology , Candida albicans/drug effects , Cell Line , Cell Survival/drug effects , Escherichia coli/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Food Packaging/methods , Mice , Microbial Sensitivity Tests , Microscopy, Atomic Force/methods , Polymerization , Staphylococcus aureus/drug effects , Surface Properties , Wettability
13.
Glob Chall ; 5(11): 2100030, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34754506

ABSTRACT

To curb the spread of the COVID-19 virus, the use of face masks such as disposable surgical masks and N95 respirators is being encouraged and even enforced in some countries. The widespread use of masks has resulted in global shortages and individuals are reusing them. This calls for proper disinfection of the masks while retaining their protective capability. In this study, the killing efficiency of ultraviolet-C (UV-C) irradiation, dry heat, and steam sterilization against bacteria (Staphylococcus aureus), fungi (Candida albicans), and nonpathogenic virus (Salmonella virus P22) is investigated. UV-C irradiation for 10 min in a commercial UV sterilizer effectively disinfects surgical masks. N95 respirators require dry heat at 100 °C for hours while steam treatment works within 5 min. To address the question on safe reuse of the disinfected masks, their bacteria filtration efficiency, particle filtration efficiency, breathability, and fluid resistance are assessed. These performance factors are unaffected after 5 cycles of steam (10 min per cycle) and 10 cycles of dry heat at 100 °C (40 min per cycle) for N95 respirators, and 10 cycles of UV-C irradiation for surgical masks (10 min per side per cycle). These findings provide insights into formulating the standard procedures for reusing masks without compromising their protective ability.

14.
Biomater Res ; 25(1): 33, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674766

ABSTRACT

BACKGROUND: In addition to the widespread use of antibiotics in healthcare settings, the current COVID-19 pandemic has escalated the emergence of antibiotic resistance. Nosocomial infections among hospitalized patients is a leading site for such resistant microbial colonization due to prolonged use of invasive devices and antibiotics in therapies. Invasive medical devices, especially catheters, are prone to infections that could accelerate the development of resistant microbes. Often, catheters - particularly urinary catheters - are prone to high infection rates. Antibiotic-coated catheters can reduce infection rates and although commercially available, are limited in efficacy and choices. METHODS: Herein, a novel and facile method to fabricate PMDS-based biomaterial for the development of antimicrobial eluting catheters is presented. Silicone based organic polymer polydimethylsiloxane (PDMS) was used to prepare a biomaterial containing novel polymeric imidazolium antimicrobial compound. RESULTS: It was found that the PDMS-based biomaterials could eradicate microbial colonization even after 60 days in culture with continuous microbial challenge, be recycled over multiple uses, stored at room temperature for long-term usage and importantly is biocompatible. CONCLUSION: The PDMS-based biomaterial displayed biocidal functionality on microbes of clinical origin, which form major threats in hospital acquired infections.

15.
ChemMedChem ; 16(23): 3553-3558, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34459159

ABSTRACT

In the search for a fast contact-killing antimicrobial surface to break the transmission pathway of lethal pathogens, nanostructured copper surfaces were found to exhibit the desired antimicrobial properties. Compared with plain copper, these nanostructured copper surfaces with Cu(OH)2 nano-sword or CuO nano-foam were found to completely eliminate pathogens at a fast rate, including clinically isolated drug resistant species. Additionally these nanostructured copper surfaces demonstrated potential antiviral properties when assessed against bacteriophages, as a viral surrogate, and murine hepatitis virus, a surrogate for SARS-CoV-2. The multiple modes of killing, physical killing and copper ion mediated killing contribute to the superior and fast kinetics of antimicrobial action against common microbes, and ESKAPE pathogens. Prototypes for air and water cleaning with current nanostructured copper surface have also been demonstrated.


Subject(s)
Bacteria/drug effects , Copper/chemistry , Hepatitis Viruses/drug effects , Hydroxides/chemistry , Nanostructures/toxicity , SARS-CoV-2/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Copper/pharmacology , Drug Resistance, Bacterial/drug effects , Mice , Microbial Sensitivity Tests , Nanostructures/chemistry , Surface Properties
16.
ChemSusChem ; 14(18): 3806-3809, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34263532

ABSTRACT

A new practical method for construction of 3D porous carbon was developed through molecular design via one-step synthesis from commercially available carbon tetrabromide and bis(trimethylsilyl)acetylene on a gram-scale, and the obtained porous carbon has a well-defined sp1 -sp3 all-carbon structure (C13 ), high stability, and high surface area.

17.
Chem Asian J ; 16(18): 2588-2595, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34313021

ABSTRACT

Zinc has been widely utilized as an antimicrobial material, often in the form of complexes or zinc oxide nanoparticles. The efficacy of zinc complexes are often due to the synergistic effect of both the zinc ions and the attached organic ligands. In contrast, the nanoparticle effect of ZnO, and the photocatalytic generation of reactive oxygen species (ROS) has been postulated to be the effective mechanism of ZnO as a biocide. Recently, new forms of zinc-based biocidal materials have been reported with distinct antimicrobial mechanisms. This minireview summarizes these recent advances, including zinc-based nano-arrays, MOF-based ROS release and zinc composites that can self-generate ROS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Metal-Organic Frameworks/pharmacology , Zinc/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Metal-Organic Frameworks/chemistry , Microbial Sensitivity Tests , Nanotechnology , Particle Size , Reactive Oxygen Species/metabolism , Surface Properties , Zinc/chemistry
18.
ACS Appl Bio Mater ; 4(10): 7524-7531, 2021 10 18.
Article in English | MEDLINE | ID: mdl-35006710

ABSTRACT

Much attention has been devoted to the synthesis and antimicrobial studies of nanopatterned surfaces. However, factors contributing to their potential and eventual application, such as large-scale synthesis, material durability, and biocompatibility, are often neglected in such studies. In this paper, the ZnO nanopillar surface is found to be amenable to synthesis in large forms and stable upon exposure to highly accelerated lifetime tests (HALT) without any detrimental effect on its antimicrobial activity. Additionally, the material is effective against clinically isolated pathogens and biocompatible in vivo. These findings illustrate the broad applicability of ZnO nanopillar surfaces in the common equipment used in health-care and consumer industries.


Subject(s)
Anti-Infective Agents , Zinc Oxide , Anti-Bacterial Agents , Disinfection , Zinc Oxide/pharmacology
19.
ACS Appl Bio Mater ; 4(2): 1544-1551, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014504

ABSTRACT

Globally, over 100,000 tons of antibiotics are consumed each year with a significant proportion discharged into the environment. As antibiotic usage continues to rise, there is a pressing need to reduce antibiotic pollution by developing antimicrobials whose activity can be switched off after the material has served its intended purpose. We have reported a series of imidazolium polymers incorporating pH-degradable linkers. The polymers show excellent antimicrobial activity across a range of Gram-positive and Gram-negative bacteria and fungi. The introduction of pH-degradable linkers was demonstrated to facilitate environmental degradation of the polymers to inactive small molecules. Both polymers and their degradation products do not induce bacterial resistance and display moderate biodegradation in surface water.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/methods , Polymers/metabolism , Humans , Hydrogen-Ion Concentration
20.
ACS Biomater Sci Eng ; 6(10): 5563-5570, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320560

ABSTRACT

Antimicrobial resistance poses an increasingly serious global health threat. Hence, new antimicrobials with low propensity toward inducing resistance in bacteria are being developed to combat this threat. In this work, a series of imidazolium tetramers have been synthesized by modulating the linkers between imidazoliums or the length of the end groups within the structures of oligomers in order to optimize the activity, selectivity, and biocompatibility of the compounds. These new materials possess high biocompatibility, Gram selectivity, and high efficacy against the selected bacterium as well as clinically isolated methicillin-resistant Staphylococcus aureus species without inducing drug resistance. Therefore, we believe that these compounds can potentially be used to mitigate resistance as highly effective disinfectants in healthcare products or as antimicrobial therapies specifically for Gram-positive bacterial infections.


Subject(s)
Anti-Infective Agents , Gram-Positive Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...