Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(6): 109880, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38952686

ABSTRACT

Amygdala serves as a highly cellular, heterogeneous brain region containing excitatory and inhibitory neurons and is involved in the dopamine and serotoninergic neuron systems. An increasing number of studies have revealed the underpinned mechanism mediating social hierarchy in mammal and vertebrate, however, there are rare studies conducted on how amygdala on social hierarchy in poultry. In this study, we conducted food competition tests and determined the social hierarchy of the rooster. We performed cross-species analysis with mammalian amygdala, and found that cell types of human and rhesus monkeys were more closely related and that of chickens were more distant. We identified 26 clusters and divided them into 10 main clusters, of which GABAergic and glutamatergic neurons were associated with social behaviors. In conclusion, our results provide to serve the developmental studies of the amygdala neuron system and new insights into the underpinned mechanism of social hierarchy in roosters.

2.
Neural Netw ; 179: 106521, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39042948

ABSTRACT

The broad learning system (BLS) is an effective machine learning model that exhibits excellent feature extraction ability and fast training speed. However, the traditional BLS is derived from the minimum mean square error (MMSE) criterion, which is highly sensitive to non-Gaussian noise. In order to enhance the robustness of BLS, this paper reconstructs the objective function of BLS based on the maximum multi-kernel correntropy criterion (MMKCC), and obtains a new robust variant of BLS (MKC-BLS). For the multitude of parameters involved in MMKCC, an effective parameter optimization method is presented. The fixed-point iteration method is employed to further optimize the model, and a reliable convergence proof is provided. In comparison to the existing robust variants of BLS, MKC-BLS exhibits superior performance in the non-Gaussian noise environment, particularly in the multi-modal noise environment. Experiments on multiple public datasets and real application validate the efficacy of the proposed method.

3.
Adv Sci (Weinh) ; : e2310300, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937997

ABSTRACT

Nano air channel transistors (NACTs) provide numerous advantages over traditional silicon devices, including faster switching speeds, higher operating frequencies, and enhanced radiation hardness attributable to the ballistic transport of electrons. In the development of field-emission-based integrated circuits, low-power consumption rectifying nano air channel diodes (NACDs) play a crucial role. However, achieving rectification characteristics in NACDs is challenging due to their structural and material symmetry. This paper proposes a vertical GaN NACD with a consistent nano air channel fabricated using IC-compatible processes. The GaN NACD exhibits an exceptionally low turn-on voltage of 0.3 V while delivering a high output current of 5.02 mA at 3 V. Notably, it demonstrates a high rectification ratio of up to 2.2 × 105, attributing to significant work function disparities within the GaN-Au structure, coupled with the reduction of Au surface roughness to minimize reverse current. Furthermore, the junction-free structure and superior material properties of GaN enable the NACD to be suitable for use in radiation-rich environments. With its potential as a fundamental component of ultrafast and ultrahigh-frequency integrated circuits, this intriguing and cost-effective rectifying diode is anticipated to garner widespread interest within the electronics community.

4.
J Anim Sci Biotechnol ; 15(1): 70, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730308

ABSTRACT

BACKGROUND: Carcass traits are crucial indicators of meat production efficiency. However, the molecular regulatory mechanisms associated with these traits remain unclear. RESULTS: In this study, we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms. Based on association analyses with the elastic net (EN) model, we identified 12 candidate genes (AMY1A, AP3B2, CEBPG, EEF2, EIF4EBP1, FGFR1, FOXD3, GOLM1, LOC107052698, PABPC1, SERPINB6 and TBC1D16) for 4 carcass-related traits, namely live weight, dressed weight, eviscerated weight, and breast muscle weight. SERPINB6 was identified as the only overlapping gene by 3 analyses, EN model analysis, weighted gene co-expression network analysis and differential expression analysis. Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts. Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression. Furthermore, a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3'UTR of SERPINB6. CONCLUSIONS: Collectively, our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation. Additionally, the downstream variant rs317934171 regulates SERPINB6 expression. These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.

5.
ISA Trans ; 149: 314-324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614901

ABSTRACT

Recently, there has been a strong interest in the minimum error entropy (MEE) criterion derived from information theoretic learning, which is effective in dealing with the multimodal non-Gaussian noise case. However, the kernel function is shift invariant resulting in the MEE criterion being insensitive to the error location. An existing solution is to combine the maximum correntropy (MC) with MEE criteria, leading to the MEE criterion with fiducial points (MEEF). Nevertheless, the algorithms based on the MEEF criterion usually require higher computational complexity. To remedy this problem, an improved MEEF (IMEEF) criterion is devised, aiming to avoid repetitive calculations of the aposteriori error, and an adaptive filtering algorithm based on gradient descent (GD) method is proposed, namely, GD-based IMEEF (IMEEF-GD) algorithm. In addition, we provide the convergence condition in terms of mean sense, along with an analysis of the steady-state and transient behaviors of IMEEF-GD in the mean-square sense. Its computational complexity is also analyzed. Simulation results demonstrate that the computational requirement of our algorithm does not vary significantly with the error sample number and the derived theoretical model is highly consistent with the learning curve. Ultimately, we employ the IMEEF-GD algorithm in tasks such as system identification, wind signal magnitude prediction, temperature prediction, and acoustic echo cancellation (AEC) to validate the effectiveness of the IMEEF-GD algorithm.

6.
Biol Reprod ; 111(1): 212-226, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38531779

ABSTRACT

Pigs serve as a robust animal model for the study of human diseases, notably in the context of disorders of sex development (DSD). This study aims to investigate the phenotypic characteristics and molecular mechanisms underlying the reproductive and developmental abnormalities of 38,XX ovotestis-DSD (OT-DSD) and 38,XX testis-DSD (T-DSD) in pigs. Clinical and transcriptome sequencing analyses were performed on DSD and normal female pigs. Cytogenetic and SRY analyses confirmed that OT/T-DSD pigs exhibited a 38,XX karyotype and lacked the SRY gene. The DSD pigs had higher levels of follicle-stimulating hormone, luteinizing hormone, and progesterone, but lower testosterone levels when compared with normal male pigs. The reproductive organs of OT/T-DSD pigs exhibit abnormal development, displaying both male and female characteristics, with an absence of germ cells in the seminiferous tubules. Sex determination and development-related differentially expressed genes shared between DSD pigs were identified in the gonads, including WT1, DKK1, CTNNB1, WTN9B, SHOC, PTPN11, NRG1, and NXK3-1. DKK1 is proposed as a candidate gene for investigating the regulatory mechanisms underlying gonadal phenotypic differences between OT-DSD and T-DSD pigs. Consequently, our findings provide insights into the molecular pathogenesis of DSD pigs and present an animal model for studying into DSD in humans.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Swine/genetics , Female , Male , Swine Diseases/genetics , Swine Diseases/metabolism , Disorders of Sex Development/genetics , Disorders of Sex Development/veterinary , Testis/metabolism , Gonads/metabolism
7.
Materials (Basel) ; 17(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399182

ABSTRACT

The production process of the metallurgical industry generates a significant quantity of hazardous waste. At present, the common disposal method for metallurgical hazardous waste is landfilling, which synchronously leads to the leaching of toxic elements and the loss of valuable metals. This paper presents a comprehensive review of the research progress in the harmless treatment and resource utilization of stainless steel dust/sludge (including stainless steel dust and stainless steel pickling sludge) and aluminum ash (including primary aluminum ash and secondary aluminum dross), which serve as representative hazardous wastes in ferrous metallurgy and nonferrous metallurgy, respectively. Additionally, the general steps involved in the comprehensive utilization of metallurgical hazardous waste are summarized. Finally, this paper provides a prospective analysis on the future development and research trends of comprehensive utilization for metallurgical hazardous waste, aiming to offer a basis for the future harmless, high-value, resource-based treatment of metallurgical hazardous waste and the realization of industrial applications in China.

8.
Anat Histol Embryol ; 53(1): e13008, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38230833

ABSTRACT

Telocytes (TCs) are distinctive interstitial cells due to their characteristic structures and heterogeneity. They are suggested to participate in tissue repair/regeneration. TCs have been identified in many organs of various mammals. However, data on TCs in lower animals are still very limited. In this work, TCs were identified in the myocardium of the bullfrog (Rana catesbeiana) by light and transmission electron microscopy (TEM). The structural relationships between TCs and neighbouring cell types were measured using the ImageJ (FiJi) morphometric software. TCs with slender Tps (telepodes) were located around cardiomyocytes (CMC). TEM revealed TCs with long Tps in the stroma between CMC. The homocellular tight junctions were observed between the Tps. The Tps were also very close to the neighbouring CMC. The distance between Tps and CMC was 0.15 ± 0.08 µm. Notably, Tps were observed to adhere to the periphery of the satellite cells. The Tps and the satellite cells established heterocellular structural connections by tight junctions. Additionally, Tps were frequently observed in close proximity to mast cells (MCs). The distance between the Tps and the MCs was 0.19 ± 0.09 µm. These results confirmed that TCs are present in the myocardium of the bullfrog, and that TCs established structural relationships with neighbouring cell types, including satellite cells and MCs. These findings provide the anatomical evidence to support the note that TCs are involved in tissue regeneration.


Subject(s)
Myocytes, Cardiac , Telocytes , Animals , Rana catesbeiana , Myocardium , Telocytes/ultrastructure , Microscopy, Electron, Transmission/veterinary , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL