Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.509
1.
Article En | MEDLINE | ID: mdl-38824209

Sponge city construction is an ideal approach to mitigate the degradation of urban water environments. Among road materials, permeable concrete pavement stands out due to its unique structure that allows rainwater runoff to flow through its pores. This paper analyzes the current application status and the prospect of different permeable pavement designs in China's sponge cities, aiming to offer valuable insights for urban planning and construction. Statistical analysis summarizes the spatial-temporal distribution patterns of urban flooding disasters in China and their causes. By comparing the characteristics and advantages of pervious concrete pavement with traditional concrete pavement, the potential of permeable concrete pavement in sponge city construction is summarized through case studies. The findings highlight that by adjusting the pore size, permeable concrete pavement can collect rainwater while filtering impurities, thereby purifying surface runoff. The range of the pervious coefficient should ideally fall within the range of 4~8 mm/s. In addition, the pavement's large contact area with the air and internal water evaporation contributes to its self-regulating capability, reducing the occurrence of extreme temperatures. Related experiments have shown that from 8 am to 12 pm, pervious concrete pavement can reduce the temperature by approximately 1 °C compared to conventional concrete. From 12 pm to 8 pm, this temperature difference increases to approximately 3 °C. To meet the needs of environmental protection and resource utilization, permeable concrete pavement can serve as an ideal tool to achieve green and low-carbon development.

2.
J Agric Food Chem ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842427

Heavy metal contamination in soils poses a significant environmental threat to human health. This study examines the effects of the chiral herbicide napropamide (NAP) on Arabidopsis thaliana, focusing on growth metrics and cadmium (Cd) accumulation. R-NAP does not adversely affect plant growth compared to the control, whereas S-NAP significantly reduces root length and fresh weight. Notably, R-NAP markedly increases Cd accumulation in the shoots, exceeding levels observed in the control and S-NAP. This increase coincides with reduced photosynthetic efficiency. Noninvasive electrode techniques reveal a higher net Cd absorption flux in the root mature zone under R-NAP than S-NAP, although similar to the control. Transcriptomic analysis highlights significant stereoisomer differences in Cd transporters, predominantly under R-NAP treatment. SEM and molecular docking simulations support that R-NAP primarily upregulates transporters such as HMA4. The results suggest careful management of herbicides like R-NAP in contaminated fields to avoid excessive heavy metal buildup in crops.

3.
BMC Genomics ; 25(1): 574, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849762

BACKGROUND: The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS: A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-ß, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS: Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.


Gene Regulatory Networks , Hair Follicle , MicroRNAs , RNA, Circular , RNA, Long Noncoding , RNA, Messenger , Animals , Hair Follicle/metabolism , Hair Follicle/growth & development , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Sheep/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Profiling , Skin/metabolism , Transcriptome , Fetus/metabolism
4.
Acta Pharm Sin B ; 14(6): 2698-2715, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828135

Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.

5.
Fa Yi Xue Za Zhi ; 40(2): 149-153, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38847029

OBJECTIVES: To investigate the age-related changes of the mandibular third molar root pulp visibility in individuals in East China, and to explore the feasibility of applying this method to determine whether an individual is 18 years or older. METHODS: A total of 1 280 oral panoramic images were collected from the 15-30 years old East China population, and the mandibular third molar root pulp visibility in all oral panoramic images was evaluated using OLZE 0-3 four-stage method, and the age distribution of the samples at each stage was analyzed using descriptive statistics. RESULTS: Stages 0, 1, 2 and 3 first appeared in 16.88, 19.18, 21.91 and 25.44 years for males and in 17.47, 20.91, 22.01 and 26.01 years for females. In all samples, individuals at stages 1 to 3 were over 18 years old. CONCLUSIONS: It is feasible to determine whether an individual in East China is 18 years or older based on the mandibular third molar root pulp visibility on oral panoramic images.


Age Determination by Teeth , Dental Pulp , Molar, Third , Radiography, Panoramic , Tooth Root , Humans , Molar, Third/diagnostic imaging , Male , Adolescent , Female , Adult , Young Adult , China , Tooth Root/diagnostic imaging , Age Determination by Teeth/methods , Dental Pulp/diagnostic imaging , Mandible/diagnostic imaging , Forensic Dentistry/methods , Age Factors
6.
Chem Soc Rev ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836324

Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.

7.
Front Plant Sci ; 15: 1378748, 2024.
Article En | MEDLINE | ID: mdl-38863534

Verticillium wilt, caused by Verticillium dahliae, is a soil-borne disease affecting eggplant. Wild eggplant, recognized as an excellent disease-resistant resource against verticillium wilt, plays a pivotal role in grafting and breeding for disease resistance. However, the underlying resistance mechanisms of wild eggplant remain poorly understood. This study compared two wild eggplant varieties, LC-2 (high resistance) and LC-7 (sensitive) at the phenotypic, transcriptomic, and metabolomic levels to determine the molecular basis of their resistance to verticillium wilt. These two varieties exhibit substantial phenotypic differences in petal color, leaf spines, and fruit traits. Following inoculation with V. dahliae, LC-2 demonstrated significantly higher activities of polyphenol oxidase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, ß-1,3 glucanase, and chitinase than did LC-7. RNA sequencing revealed 4,017 differentially expressed genes (DEGs), with a significant portion implicated in processes associated with disease resistance and growth. These processes encompassed defense responses, cell wall biogenesis, developmental processes, and biosynthesis of spermidine, cinnamic acid, and cutin. A gene co-expression analysis identified 13 transcription factors as hub genes in modules related to plant defense response. Some genes exhibited distinct expression patterns between LC-2 and LC-7, suggesting their crucial roles in responding to infection. Further, metabolome analysis identified 549 differentially accumulated metabolites (DAMs) between LC-2 and LC-7, primarily consisting of compounds such as flavonoids, phenolic acids, lipids, and other metabolites. Integrated transcriptome and metabolome analyses revealed the association of 35 gene-metabolite pairs in modules related to the plant defense response, highlighting the interconnected processes underlying the plant defense response. These findings characterize the molecular basis of LC-2 resistance to verticillium wilt and thus have potential value for future breeding of wilt-resistant eggplant varieties.

8.
Front Plant Sci ; 15: 1415921, 2024.
Article En | MEDLINE | ID: mdl-38863540

GATA proteins are transcription factors of zinc finger proteins, which play an important role in plant growth development and abiotic stress. However, there have been no identification or systematic studies of the GATA gene family in eggplant. In this study, 28 SmGATA genes were identified in the genome database of eggplant, which could be divided into four subgroups. Plant development, hormones, and stress-related cis-acting elements were identified in promoter regions of the SmGATA gene family. RT-qPCR indicated that 4 SmGATA genes displayed upregulated expressions during fruit developmental stage, whereas 2 SmGATA genes were down-regulated expression patterns. It was also demonstrated that SmGATA genes may be involved in light signals to regulate fruit anthocyanin biosynthesis. Furthermore, the expression patterns of SmGATA genes under ABA, GA and MeJA treatments showed that the SmGATAs were involved in the process of fruit ripening. Notably, SmGATA4 and SmGATA23 were highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways and the proteins they encoded were localized in the nucleus. All these results showed GATA genes likely play a major role in regulating fruit anthocyanin biosynthesis by integrating the light, ABA, GA and MeJA signaling pathways and provided references for further research on fruit quality in eggplant.

9.
J Nanobiotechnology ; 22(1): 277, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783332

Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.


Gasotransmitters , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Humans , Animals , Gasotransmitters/therapeutic use , Gasotransmitters/metabolism , Nitric Oxide/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Carbon Monoxide/metabolism , Carbon Monoxide/therapeutic use , Oxygen/metabolism , Spinal Cord , Hydrogen/therapeutic use , Hydrogen/pharmacology
10.
World J Clin Cases ; 12(14): 2308-2315, 2024 May 16.
Article En | MEDLINE | ID: mdl-38765748

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a leading risk factor for the development and progression of chronic kidney disease (CKD). However, an accurate and convenient marker for early detection and appropriate management of CKD in individuals with T2DM is limited. Recent studies have demonstrated a strong correlation between the neutrophil-to-lymphocyte ratio (NLR) and CKD. Nonetheless, the predictive value of NLR for renal damage in type 2 diabetic patients remains understudied. AIM: To investigate the relationship between NLR and renal function in T2DM patients. METHODS: This study included 1040 adults aged 65 or older with T2DM from Shanghai's Community Health Service Center. The total number of neutrophils and lymphocytes was detected, and NLR levels were calculated. CKD was defined as an estimated glomerular filtration rate ≤ 60 mL/min/1.73 m². Participants were divided into four groups based on NLR levels. The clinical data and biochemical characteristics were compared among groups. A multivariate logistic regression model was used to analyze the association between NLR levels and CKD. RESULTS: Significant differences were found in terms of sex, serum creatinine, blood urea nitrogen, total cholesterol, and low-density lipoprotein cholesterol among patients with T2DM in different NLR groups (P < 0.0007). T2DM patients in the highest NLR quartile had a higher prevalence of CKD (P for trend = 0.0011). Multivariate logistic regression analysis indicated that a high NLR was an independent risk factor for CKD in T2DM patients even after adjustment for important clinical and pathological parameters (P = 0.0001, odds ratio = 1.41, 95% confidence intervals: 1.18-1.68). CONCLUSION: An elevated NLR in patients with T2DM is associated with higher prevalence of CKD, suggesting that it could be a marker for the detection and evaluation of diabetic kidney disease.

11.
Ultrason Sonochem ; 107: 106928, 2024 May 27.
Article En | MEDLINE | ID: mdl-38820932

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by infiltration of inflammatory cells, hyperplasia of synovium, and destruction of the joint cartilage. Owing to the low drug delivery efficiency and limited immunosuppression effect, complete cure for RA remains a formidable challenge. Here, we show that live macrophages (Mφs) carrying protoporphyrin-loaded Fe3O4 nanoparticles can migrate to the RA tissues and inhibit the inflammation by sonodynamic therapy. The inflammation of RA leads to the release of cytokines, which guides the migration of the Mφs into the RA tissues, realizing precise delivery of therapeutics. The following sonodynamic therapy induced by ultrasound and protoporphyrin destructs the proliferating synovial cells and also infiltrated inflammatory cells, demonstrating significant therapeutic effect for RA. Meanwhile, the cytokines and relapse of RA can be remarkably suppressed because of the efficient damage to the resident inflammatory cells.

12.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167269, 2024 May 27.
Article En | MEDLINE | ID: mdl-38810919

Hyperalgesia is typified by reduced pain thresholds and heightened responses to painful stimuli, with a notable prevalence in menopausal women, but the underlying mechanisms are far from understood. ß-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism, has been reported to be a novel ligand of the Mas-related G protein coupled receptor D (MrgprD), which mediates pain and hyperalgesia. Here, we established a hyperalgesia model in 8-week-old female mice through ovariectomy (OVX). A significant increase in BAIBA plasma level was observed and was associated with decline of mechanical withdrawal threshold, thermal and cold withdrawal latency in mice after 6 weeks of OVX surgery. Increased expression of MrgprD in dorsal root ganglion (DRG) was shown in OVX mice compared to Sham mice. Interestingly, chronic loading with BAIBA not only exacerbated hyperalgesia in OVX mice, but also induced hyperalgesia in gonadally intact female mice. BAIBA supplementation also upregulated the MrgprD expression in DRG of both OVX and intact female mice, and enhanced the excitability of DRG neurons in vitro. Knockout of MrgprD markedly suppressed the effects of BAIBA on hyperalgesia and excitability of DRG neurons. Collectively, our data suggest the involvement of BAIBA in the development of hyperalgesia via MrgprD-dependent pathway, and illuminate the mechanisms underlying hyperalgesia in menopausal women.

13.
Neoplasia ; 53: 101004, 2024 07.
Article En | MEDLINE | ID: mdl-38733769

Thioredoxin reductases are frequently overexpressed in various solid tumors as a protective mechanism against heightened oxidative stress. Inhibitors of this system, such as Auranofin, are effective in eradicating cancer cells. However, the clinical significance of thioredoxin reductase 1 (TrxR1) in lung cancer, as well as the potential for its antagonist as a treatment option, necessitated further experimental validation. In this study, we observed significant upregulation of TrxR1 specifically in non-small cell lung cancer (NSCLC), rather than small cell lung cancer. Moreover, TrxR1 expression exhibited associations with survival rate, tumor volume, and histological classification. We developed a novel TrxR1 inhibitor named LW-216 and assessed its antitumor efficacy in NSCLC. Our results revealed that LW-216 is effectively bound with intracellular TrxR1 at sites R371 and G442, facilitating TrxR1 ubiquitination and suppressing TrxR1 expression, while not affecting TrxR2 expression. Treatment of LW-216-induced DNA damage and cell apoptosis in NSCLC cells through the generation of reactive oxygen species (ROS). Importantly, supplementation with N-acetylcysteine (NAC) or ectopic TrxR1 expression reversed LW-216-induced apoptosis. Furthermore, LW-216 displayed potent tumor growth inhibition in NSCLC cell-implanted mice, reducing TrxR1 expression in xenografts. Remarkably, LW-216 exhibited superior antitumor activity compared to Auranofin in vivo. Collectively, our research provides compelling evidence supporting the potential of targeting TrxR1 by LW-216 as a promising therapeutic strategy for NSCLC.


Apoptosis , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Reactive Oxygen Species , Thioredoxin Reductase 1 , Ubiquitination , Xenograft Model Antitumor Assays , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Thioredoxin Reductase 1/metabolism , Thioredoxin Reductase 1/genetics , Reactive Oxygen Species/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Apoptosis/drug effects , Animals , Mice , Cell Line, Tumor , Proteolysis , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Disease Models, Animal , Male , Antineoplastic Agents/pharmacology
14.
Biomacromolecules ; 25(6): 3345-3359, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38700942

The management of diabetic ulcers poses a significant challenge worldwide, and persistent hyperglycemia makes patients susceptible to bacterial infections. Unfortunately, the overuse of antibiotics may lead to drug resistance and prolonged infections, contributing to chronic inflammation and hindering the healing process. To address these issues, a photothermal therapy technique was incorporated in the preparation of wound dressings. This innovative solution involved the formulation of a self-healing and injectable hydrogel matrix based on the Schiff base structure formed between the oxidized Bletilla striata polysaccharide (BSP) and hydroxypropyltrimethylammonium chloride chitosan. Furthermore, the introduction of CuO nanoparticles encapsulated in polydopamine imparted excellent photothermal properties to the hydrogel, which promoted the release of berberine (BER) loaded on the nanoparticles and boosted the antibacterial performance. In addition to providing a reliable physical protection to the wound, the developed hydrogel, which integrated the herbal components of BSP and BER, effectively accelerated wound closure via microenvironment regulation, including alleviated inflammatory reaction, stimulated re-epithelialization, and reduced oxidative stress based on the promising results from cell and animal experiments. These impressive outcomes highlighted their clinical potential in safeguarding the wound against bacterial intrusion and managing diabetic ulcers.


Chitosan , Hydrogels , Polysaccharides , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photothermal Therapy/methods , Mice , Humans , Berberine/pharmacology , Berberine/chemistry , Rats , Diabetes Mellitus, Experimental/drug therapy , Copper/chemistry , Copper/pharmacology , Male , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Wound Infection/drug therapy , Wound Infection/microbiology , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Metal Nanoparticles/chemistry
15.
Biomed Pharmacother ; 175: 116689, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703508

Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200 mg/kg NR for 3 h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5 mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.


Apoptosis , Myocardial Reperfusion Injury , Niacinamide , Oxidative Stress , Pyridinium Compounds , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 3 , Superoxide Dismutase , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Sirtuin 3/metabolism , Signal Transduction/drug effects , Male , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Superoxide Dismutase/metabolism , Rats , Apoptosis/drug effects , Oxidative Stress/drug effects , Pyridinium Compounds/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Cell Line , Cardiotonic Agents/pharmacology , Sirtuins
16.
PLoS One ; 19(5): e0303830, 2024.
Article En | MEDLINE | ID: mdl-38758773

In numerous developing nations, the pervasive practice of crop residue incineration is a principal contributor to atmospheric contamination in agricultural operations. This study examines the repercussions of such biomass combustion on air quality during the autumnal harvest season, utilizing data acquired from satellite-based remote sensing of fire events and air pollution measurements. Employing wind direction information alongside difference-in-difference and fixed-effects methodologies, this investigation rectifies estimation inaccuracies stemming from the non-random distribution of combustion occurrences. The empirical findings reveal that agricultural residue burning precipitates an elevation in average PM2.5 and PM10 concentrations by approximately 27 and 22 µg/m3 during the autumnal incineration period, respectively. Furthermore, air pollution attributed to residue burning in prominent grain-producing regions exceeds the national average by approximately 40%. By integrating economic paradigms into agri-environmental inquiries, this study offers novel insights and substantiation of the environmental expenditures engendered by crop residue burning, juxtaposed with extant meteorological and ecological research findings.


Agriculture , Air Pollution , Crops, Agricultural , Fires , Air Pollution/analysis , Crops, Agricultural/growth & development , Particulate Matter/analysis , Air Pollutants/analysis , Incineration , Environmental Monitoring/methods , Seasons
17.
Adv Mater ; : e2403880, 2024 May 09.
Article En | MEDLINE | ID: mdl-38723049

Classic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced. The polymer network possesses a mechanically ductile character with an Arrhenius-type temperature-dependent viscoelasticity. The assembled capacitive pressure sensor is able to achieve a sensitivity of up to 9.26 kPa-1, fast response/recovery time of 32/24 ms, and can deliver consistent signals of continuous consecutive cycles even after being self-healed or closed-loop recycled for real-time detection of human motions. This is expected to be of high interest for current capacitive sensing research to move toward a life-like, high performance, and circular economy direction.

18.
Front Psychol ; 15: 1340200, 2024.
Article En | MEDLINE | ID: mdl-38721322

Introduction: The study examines the interplay between gratitude and career success, with career resilience as the mediating mechanism and personality traits, i.e., conscientiousness and extraversion, as moderating factors. The overarching goal is to enhance our understanding of the complex dynamics that influence career outcomes of college students in China. Methods: Data are gathered through a survey-based technique, capturing responses from a diverse sample of participants. The analysis employs Structural Equation Modeling (SEM) to explore the relationships among gratitude, career resilience, personality traits, and career success. Results: The results reveal that gratitude impacts students' career success through the mediating mechanism of career resilience. In addition, conscientiousness and extraversion are found to positively intervene the direct effect between gratitude and career resilience and the indirect effect between gratitude and career success through career resilience. Discussion: The findings offer valuable insights for individuals, organizations, and career development practitioners, emphasizing the importance of cultivating gratitude and recognizing the differential impact of personality traits on this process. As organizations seek to foster resilient and successful career paths, acknowledging these nuanced dynamics can inform targeted interventions and strategies.

19.
Asian J Androl ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38727211

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

20.
BMC Cancer ; 24(1): 572, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720306

BACKGROUND: Postoperative central diabetes insipidus (CDI) is commonly observed in craniopharyngioma (CP) patients, and the inflammatory response plays an important role in CPs. We aimed to evaluate the predictive value of preoperative peripheral inflammatory markers and their combinations regarding CDI occurrence in CPs. METHODS: The clinical data including preoperative peripheral inflammatory markers of 208 CP patients who underwent surgical treatment were retrospectively collected and analyzed. The preoperative peripheral white blood cells (WBC), neutrophils, lymphocytes, monocytes, platelet (PLT), neutrophil-to-lymphocyte ratio (NLR), derived-NLR (dNLR), monocyte-to-lymphocyte ratio (MLR) and PLT-to-lymphocyte ratio (PLR) were assessed in total 208 CP patients and different age and surgical approach CP patient subgroups. Their predictive values were evaluated by the receiver operator characteristic curve analysis. RESULTS: Preoperative peripheral WBC, neutrophils, NLR, dNLR, MLR, and PLR were positively correlated and lymphocyte was negatively associated with postoperative CDI occurrence in CP patients, especially when WBC ≥ 6.66 × 109/L or lymphocyte ≤ 1.86 × 109/L. Meanwhile, multiple logistic regression analysis showed that WBC > 6.39 × 109/L in the > 18 yrs age patients, WBC > 6.88 × 109/L or lymphocytes ≤ 1.85 × 109/L in the transcranial approach patients were closely associated with the elevated incidence of postoperative CDI. Furthermore, the area under the curve obtained from the receiver operator characteristic curve analysis showed that the best predictors of inflammatory markers were the NLR in total CP patients, the MLR in the ≤ 18 yrs age group and the transsphenoidal group, the NLR in the > 18 yrs age group and the dNLR in the transcranial group. Notably, the combination index NLR + dNLR demonstrated the most valuable predictor in all groups. CONCLUSIONS: Preoperative peripheral inflammatory markers, especially WBC, lymphocytes and NLR + dNLR, are promising predictors of postoperative CDI in CPs.


Craniopharyngioma , Diabetes Insipidus, Neurogenic , Pituitary Neoplasms , Postoperative Complications , Humans , Craniopharyngioma/surgery , Craniopharyngioma/blood , Craniopharyngioma/complications , Female , Male , Retrospective Studies , Adult , Pituitary Neoplasms/surgery , Pituitary Neoplasms/blood , Pituitary Neoplasms/complications , Postoperative Complications/blood , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Adolescent , Middle Aged , Child , Young Adult , Diabetes Insipidus, Neurogenic/blood , Diabetes Insipidus, Neurogenic/etiology , Neutrophils , Biomarkers/blood , Lymphocytes , Inflammation/blood , Leukocyte Count , Preoperative Period , Child, Preschool , Prognosis , ROC Curve
...