Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 895
Filter
2.
Biol Reprod ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058647

ABSTRACT

Antral follicle size is a useful predictive marker of the competency of enclosed oocytes for yielding an embryo following in vitro maturation and fertilization. However, the molecular mechanisms underpinning oocyte developmental potential during bovine antral follicle growth are still unclear. Here, we used a modified single-cell multi-omics approach to analyze the transcriptome, DNA methylome and chromatin accessibility in parallel for oocytes and cumulus cells collected from bovine antral follicles of different sizes. Transcriptome profiling identified three types of oocytes (Small, Medium and Large) that underwent different developmental trajectories, with Large oocytes exhibiting the largest average follicle size and characteristics resembling metaphase-II oocytes. Differential expression analysis and real-time PCR assay showed that most replication-dependent histone genes were highly expressed in Large oocytes. The joint analysis of multi-omics data revealed that the transcription of 20 differentially expressed genes in Large oocytes was associated with both DNA methylation and chromatin accessibility. In addition, oocyte-cumulus interaction analysis showed that inflammation, DNA damage, and p53 signaling pathways were active in Small oocytes, which had the smallest average follicle sizes. We further confirmed that p53 pathway inhibition in in vitro maturation experiments using oocytes obtained from small antral follicles could improve the quality of oocytes and increased the blastocyte rate after in vitro fertilization and culture. Our work provides new insights into the intricate orchestration of bovine oocyte fate determination during antral folliculogenesis, which is instrumental for optimizing in vitro maturation techniques to optimize oocyte quality.

3.
J Colloid Interface Sci ; 677(Pt A): 79-89, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39083894

ABSTRACT

Carbon based materials are widely used in the preparation of microwave absorption materials due to their low density, high attenuation loss and large specific surface area. However, their high conductivity usually leads to high reflection loss. In this study, multi-layer heterogeneous interfaces were constructed in liquid metal graphite hybrid powder to reduce reflection loss and enhance microwave absorption performance. Gallium oxide (Ga2O3) layer was formed in Ga coated graphite powder to improve impedance matching and attenuation constant via an annealing treatment. Specifically, the hybrid particles with 50 wt% Ga and being annealed at 120 °C for 2 h have a minimum reflection loss (RLmin) value of -42.68 dB and a maximum effective absorption bandwidth (EAB) of 4.11 GHz at a thickness of 3.3 mm. The hybrid particles not only have multi-layer structures with different electrical conductivity, but also form heterojunctions between different interfaces, which can further enhance dipole and interfacial polarization.

4.
Environ Sci Technol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048519

ABSTRACT

For electrochemical application in seawater or brine, continuous scaling on cathodes will form insulation layers, making it nearly impossible to run an electrochemical reaction continuously. Herein, we report our discovery that a cathode consisting of conical nanobundle arrays with hydrophobic surfaces exhibits a unique scaling-free function. The hydrophobic surfaces will be covered with microbubbles created by electrolytic water splitting, which limits scale crystals from standing only on nanotips of conical nanobundles, and the bursting of large bubbles formed by the accumulation of microbubbles will cause a violent disturbance, removing scale crystals automatically from nanotips. Benefiting from the scaling-free properties of the cathode, high-purity nano-CaCO3 (98.9%) and nano-Mg(OH)2 (99.5%) were extracted from seawater. This novel scaling-free cathode is expected to eliminate the inherent limitations of electrochemical technology and open up a new route to seawater mining.

5.
J Agric Food Chem ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079007

ABSTRACT

In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.

6.
Plant Dis ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082928

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae, is a globally destructive soil-borne disease affecting cruciferous plants. Here, the predominant pathotypes of P. brassicae in six cities within Zhejiang Province were identified using the Williams and European Clubroot Differential (ECD) systems. A phylogenetic analysis of P. brassicae isolates infecting cruciferous crops worldwide was conducted using MEGA, and their ITS2 secondary structures were predicted through the ITS2 database. Accessions of B. rapa, B. oleracea, B. juncea, and Eruca sativa Mill. were employed to assess clubroot resistance. The results revealed that the prevalent pathotypes in Zhejiang Province were pathotype 1, ECD20/31/12 and ECD24/16/30; pathotype 3, ECD20/15/4; pathotype 8, ECD16/0/0 and ECD24/0/0; and pathotype 2, ECD16/15/15. Isolates from distinct genera of Brassicaceae formed separate branches in the evolutionary tree. Moreover, isolates of Brassica crops from Zhejiang Province exhibited homology with those from other global regions, a finding corroborated by their ITS2 secondary structure. Approximately 80% and 95% of B. rapa and B. juncea crops displayed susceptible phenotypes for pathotype 8, ECD16/0/0, whereas approximately 60% of B. oleracea crops exhibited resistance. Furthermore, three Brassica crop accessions showed significant variation in resistance to the pathogen, both among morphological and geographical origin groups. This study contributes to understanding the distribution of diverse P. brassicae pathotypes in different regions of Zhejiang Province and facilitates the identification of Brassica crops with potential disease resistance suitable for cultivation in the province.

7.
J Ovarian Res ; 17(1): 154, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054488

ABSTRACT

BACKGROUND: Mind-body interventions (MBI) have emerged as a potential therapeutic approach, but their effectiveness in the treatment of Polycystic Ovary Syndrome (PCOS) remains inconclusive. This study systematically evaluates the effectiveness of MBI on quality of life, anthropometry, androgen secretion, glucose, and lipid metabolism in PCOS. METHODS: A computer search was conducted across three databases: PubMed, the Cochrane Library, and EMBASE, to identify randomized controlled trials (RCTs) related to MBI for PCOS from their inception until July 2024. DerSimonian and Laird's random-effects model and Stata 17.0 software was employed for our meta-analysis. RESULTS: Twelve RCTs were included. MBI significantly improved PCOSQ subscale scores, including emotional disturbances (MD: 7.75, 95% CI: 6.10 to 9.40), body hair (MD: 2.73, 95% CI: 0.54 to 4.91), menstrual problems (MD: 3.79, 95% CI: 2.89 to 4.69), and weight (MD: 1.48, 95% CI: 0.03 to 2.93). Furthermore, there was a reduction in depression levels (MD: -1.53, 95% CI: -2.93 to -0.13). Sensitivity analysis confirmed the robustness of PCOSQ-Emotional disturbances and PCOSQ-Menstrual problems, with a high GRADE level of evidence for these subscales. Secondary outcome measures, including waist-hip ratio, fasting blood glucose, and HOMA-IR exhibited statistically significant differences. Subgroup analysis revealed that obesity could influence treatment outcomes. CONCLUSION: MBI can serve as an alternative therapy, modulating effect on the quality of life and depression in PCOS patients. Future well-designed, high-quality, and large-scale studies should be conducted to thoroughly assess the impact of different Mind-Body Interventions (MBI) on various PCOS phenotypes. TRIAL REGISTRATION: PROSPERO (CRD42023472035).


Subject(s)
Mind-Body Therapies , Polycystic Ovary Syndrome , Quality of Life , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/psychology , Humans , Female , Mind-Body Therapies/methods , Randomized Controlled Trials as Topic , Treatment Outcome
8.
Ultrasound Med Biol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39068137

ABSTRACT

OBJECTIVE: The purpose of this study was to analyze the independent risk factors of malignant subpleural pulmonary lesions (SPLs) on B-mode ultrasound (US) images, to construct the combined predictive indicators, and to prospectively verify their predictive efficacy. METHODS: A total of 336 patients with SPLs were included in the prospective study, of whom the single-center included patients between September 2019 and December 2019 were the development cohort (DC) (n = 219); Patients who were concurrently enrolled in three centers between January and February 2020 were the validation cohort (VC) (n = 117). The clinical features and B-mode US parameters were collected. Based on the DC, a combined predictive indicators model was developed using binary logistic regression. Then the discrimination was verified externally in the VC. The reference criteria were from the comprehensive diagnosis of clinical-radiological-pathological made by two senior respiratory physicians. RESULTS: The combined predictive indicators model was finally constructed by five parameters: age, borderline, angle between the lesion border and thoracic wall, posterior echo of the lesion and invasion of the pleura. The fitting degree of the model was good (χ2 = 9.198, p = 0.326). The area under ROC curve of the model was 0.872 (DC) and 0.808 (VC), yielding a higher net benefit than individual risk factors. CONCLUSION: The combined predictive indicators are useful in the assessment of malignant SPLs and are a useful adjunct diagnostic tool, especially in primary healthcare settings in developing countries.

9.
Alzheimers Dement ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072981

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive decline. To date, the specific dysfunction in the brain's hierarchical structure in AD remains unclear. METHODS: We introduced the structural decoupling index (SDI), based on a multi-site data set comprising functional and diffusion-weighted magnetic resonance imaging data from 793 subjects, to assess their brain hierarchy. RESULTS: Compared to normal controls (NCs), individuals with AD exhibited increased SDI within the posterior superior temporal sulcus, insular gyrus, precuneus, hippocampus, amygdala, postcentral gyrus, and cingulate gyrus; meanwhile, the patients with AD demonstrated decreased SDI in the frontal lobe. The SDI in those regions also showed a significant correlation with cognitive ability. Moreover, the SDI was a robust AD neuroimaging biomarker capable of accurately distinguishing diagnostic status (area under the curve [AUC] = 0.86). DISCUSSION: Our findings revealed the dysfunction of the brain's hierarchical structure in AD. Furthermore, the SDI could serve as a promising neuroimaging biomarker for AD. HIGHLIGHTS: This study utilized multi-center, multi-modal data from East Asian populations. We found an increased spatial gradient of the structure decoupling index (SDI) from sensory-motor to higher-order cognitive regions. Changes in SDI are associated with energy metabolism and mitochondria. SDI can identify Alzheimer's disease (AD) and further uncover the disease mechanisms of AD.

10.
Int J Womens Health ; 16: 1023-1032, 2024.
Article in English | MEDLINE | ID: mdl-38835833

ABSTRACT

Objective: To investigate the potential protective impact of miR-10a-modified HUMSCs-derived exosomes on both premature ovarian failure and the functionality of ovarian granulosa cells in a POF model. Methods: KGN cells were co-cultured with cisplatin-diaminedichloroplatinum (II) (10 µM) for 24 h to establish an in vitro POF model. The cells were distributed into three distinct groups: the control group, the POF group, and the POF + HUCMSC group. The plasmid sh-NC, sh-miR-10 a and miR-10 a mimic were transfected into KGN cells. After co-cultured with HUCMSC-EVs for 48 h, they were divided into HUCMSC group, sh-miR-10 a-HUMSCs-exosomes group and miR-10 a-HUMSCs-exosomes group. Flow cytometry was adopted to assess the impact of HUMSCs surface immune antigens and miR-10a-HUCMSCs-exosomes on KGN cell apoptosis. Additionally, the evaluation of cell proliferation was carried out through CCK-8 and EDU assays. Western blot analysis was utilized to detect the Caspase-3, Bax, and Bcl-2 proteins levels. Furthermore, the levels of TNF-α, IL-6, IL-10, MDA, SOD, and CAT were quantified using ELISA. Results: Compared with the Control group, the POF group inhibited the growth of ovarian granulosa cells (P<0.01), reduced the number of EDU cells (P<0.01), and increased the protein expression of Caspase-3 (P<0.05) and Bax (P<0.01). HUMSCs treatment significantly down-regulated the expression of IL-6, TNF-α and MDA, while up-regulating the expression of IL-10, SOD and CAT (P<0.01); the overexpression of miR-10a promoted cell growth, besides, the introduction of miR-10a-HUMSCs-derived exosomes led to an elevation in the proliferation rate of OGCs affected by POF and concurrently suppressed the apoptosis rate. Conclusion: HUMSCs-derived exosomes modified by miR-10a have protective effects on premature ovarian failure and ovarian granulosa cell function in POF model.

11.
Opt Express ; 32(10): 17229-17238, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858912

ABSTRACT

In this paper we explore the application of low-loss multimode anti-resonant hollow-core fiber (MM-AR-HCF) in the delivery of nanosecond laser pulses at 1 µm wavelength. MM-AR-HCF with large core offers a rich content of low-loss higher-order modes which plays a key role in the efficient coupling and transmission of high-power laser of low beam quality. In the experiment, laser pulses of an average pulse energy of 21.8 mJ with 14.6 ns pulse width (corresponding a peak power of 1.49 MW) are transmitted through MM-AR-HCF of 9.8 m length without damage. 85% transmission efficiency is achieved where the incident laser beam suffers a low beam quality with M2 x and M2 y of 2.18 and 1.99 respectively. Laser-induced damage threshold (LIDT) of MM-AR-HCF was measured to be 22.6 mJ for 85% transmission efficiency, which is 7 times higher than that for a multimode silica optical fiber with a large core of 200 µm.

12.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38869543

ABSTRACT

From quantum communications to quantum computing, single-photon emitters (SPEs) are essential components of numerous quantum technologies. Two-dimensional (2D) materials have especially been found to be highly attractive for the research into nanoscale light-matter interactions. In particular, localized photonic states at their surfaces have attracted great attention due to their enormous potential applications in quantum optics. Recently, SPEs have been achieved in various 2D materials, while the challenges still remain. This paper reviews the recent research progress on these SPEs based on various 2D materials, such as transition metal dichalcogenides (TMDs), hexagonal boron nitride (hBN), and twisted-angle 2D materials. Additionally, we summarized the strategies to create, position, enhance, and tune the emission wavelength of these emitters by introducing external fields into these 2D system. For example, pronounced enhancement of the SPEs' properties can be achieved by coupling with external fields, such as the plasmonic field, and by locating in optical microcavities. Finally, this paper also discusses current challenges and offers perspectives that could further stimulate scientific research in this field. These emitters, due to their unique physical properties and integration potential, are highly appealing for applications in quantum information and communication, as well as other physical and technological fields.

13.
Sci Adv ; 10(24): eado4791, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865465

ABSTRACT

The stemness loss-associated dysregeneration of impaired alveolar type 2 epithelial (AT2) cells abolishes the reversible therapy of idiopathic pulmonary fibrosis (IPF). We here report an inhalable mucus-penetrating lipid nanoparticle (LNP) for codelivering dual mRNAs, promoting realveolarization via restoring AT2 stemness for IPF treatment. Inhalable LNPs were first formulated with dipalmitoylphosphatidylcholine and our in-house-made ionizable lipids for high-efficiency pulmonary mucus penetration and codelivery of dual messenger RNAs (mRNAs), encoding cytochrome b5 reductase 3 and bone morphogenetic protein 4, respectively. After being inhaled in a bleomycin model, LNPs reverses the mitochondrial dysfunction through ameliorating nicotinamide adenine dinucleotide biosynthesis, which inhibits the accelerated senescence of AT2 cells. Concurrently, pathological epithelial remodeling and fibroblast activation induced by impaired AT2 cells are terminated, ultimately prompting alveolar regeneration. Our data demonstrated that the mRNA-LNP system exhibited high protein expression in lung epithelial cells, which markedly extricated the alveolar collapse and prolonged the survival of fibrosis mice, providing a clinically viable strategy against IPF.


Subject(s)
Bleomycin , Mucus , Nanoparticles , Animals , Nanoparticles/chemistry , Mice , Mucus/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Disease Models, Animal , Administration, Inhalation , Lipids/chemistry , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Liposomes
14.
Acad Radiol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824087

ABSTRACT

OJECTIVES: Low-grade glioma (LGG) is associated with increased mortality owing to recrudescence and the tendency for malignant transformation. Therefore, it is imperative to discover novel prognostic biomarkers as existing traditional prognostic biomarkers of glioma, including clinicopathological features and imaging examinations, are unable to meet the clinical demand for precision medicine. Accordingly, we aimed to evaluate the prognostic value of cyclin D1 (CCND1) expression levels and construct radiomic models to predict these levels in patients with LGG MATERIALS AND METHODS: A total of 412 LGG cases from The Cancer Genome Atlas (TCGA) were used for gene-based prognostic analysis. Using magnetic resonance imaging (MRI) images stored in The Cancer Imaging Archive with genomic data from TCGA, 149 cases were selected for radiomics feature extraction and model construction. After feature extraction, the radiomic signature was constructed using logistic regression (LR) and support vector machine (SVM) analyses. RESULTS: CCND1 was identified as a prognosis-related gene with differential expression in tumor and normal samples and plays a role in regulating both the cell cycle and immune response. Landmark analysis revealed that high-expression levels of CCND1 were beneficial for survival (P < 0.05) in advanced LGG. Four optimal radiomics features were selected to construct radiomics models. The performance of LR and SVM achieved areas under the curve of 0.703 and 0.705, as well as 0.724 and 0.726 in the training and validation sets, respectively. CONCLUSION: Elevated levels of CCND1 expression could impact the prognosis of patients with LGG. MRI-based radiomics, especially the AUC values, can serve as a novel tool for predicting CCND1 expression and understanding the correlation between elevated CCND1 expression and prognosis. AVAILABILITY OF DATA AND MATERIALS: The datasets analyzed during the current study are available in the TCGA, TCIA, UCSC XENA and GTEx repository, https://portal.gdc.cancer.gov/, https://www.cancerimagingarchive.net/, https://xenabrowser.net/datapages/, https://www.gtexportal.org/home/.

15.
Neurosci Bull ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824231

ABSTRACT

The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.

16.
Fundam Res ; 4(2): 284-290, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933517

ABSTRACT

In the two-dimensional (2D) melting transition of colloidal systems, the hexatic-isotropic (H-I) transition can be either first-order or continuous. However, how particle dynamics differs at the single-particle level during these two different melting transitions remains to be disclosed. In this work, by Brownian dynamics (BD) simulations, we have systematically studied the dynamic behavior of corner-rounded hexagons during the H-I transition, for a range of corner-roundness ζ = 0.40 to 0.99 that covers the crossover from the continuous to first-order nature of H-I transition. The results show that hexagons with ζ ≤ 0.5 display a continuous H-I transition, whereas those with ζ ≥ 0.6 demonstrate a first-order H-I transition. Dynamic analysis shows different evolution pathways of the dominant cluster formed by migrating particles, which results in a droplet-like cluster structure for ζ = 0.40 hexagons and a tree-like cluster structure for ζ = 0.99 hexagons. Further investigations on the hopping activities of particles suggest a cooperative origin of migrating clusters. Our work provides a new aspect to understand the dependence of the nature of H-I transition on the roundness of hexagons through particle dynamic behavior.

17.
ACS Appl Mater Interfaces ; 16(26): 34349-34357, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912925

ABSTRACT

Two-dimensional materials hold great potentials for beyond-CMOS (complementary metal-oxide-semiconductor) electronical and optoelectrical applications, and the development of field effect transistors (FET) with excellent performance using such materials is of particular interest. How to improve the performance of devices thus becomes an urgent issue. The performance of FETs depends greatly on the intrinsic electrical properties of the channel materials, meanwhile the device interface quality, such as extrinsic scattering of charged impurities, charge traps, and substrate surface roughness have a great influence on the performance. In this paper, the impact of the interface quality on the carrier diffusion behaviors of monolayer (ML) MoSe2 has been investigated by using an in situ ultrafast laser technique to avoid the surface contamination during device fabrication process. Two types of self-assembled monolayers (SAMs) are introduced to modify the gate dielectric surface through an interface engineering approach to obtain chemical-stable interfaces. The results showed that the transport properties of ML MoSe2 were enhanced after interface engineering, for example, the carrier mobility of ML MoSe2 was improved from ∼59.4 to ∼166.5 cm2 V-1 s-1 after the SAM modification. Meanwhile, the photocarrier dynamics of ML MoSe2 before and after interfacial engineering were also carefully studied. Our studies provide a feasible method for improving the carrier diffusion behaviors of such materials, and making them suited for application in future integrated circuit.

18.
Diagn Pathol ; 19(1): 82, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879528

ABSTRACT

BACKGROUND: Ovarian clear cell carcinoma (OCCC), well known for its chemoresistance to platinum-based chemotherapy, exhibited a good response in clinical trials of anti-PD-1/PD-L1 inhibitors. By assessing PD-L1 expression, we sought to determine the potential therapeutic benefit of PD-1/PD-L1 inhibitors in OCCC. METHODS AND RESULTS: The retrospective study included 152 individuals with OCCC between 2019 and 2022 at Peking Union Medical College Hospital. Paired tumors of primary versus recurrent lesions (17 pairs from 15 patients) or primary versus metastatic lesions (11 pairs from 9 patients) were also included. The 22C3 pharmDx assay and whole sections were used for PD-L1 immunohistochemical staining. Pathologists with experience in premarket clinical trials evaluated PD-L1 expression based on various diagnostic criteria (TPS 1%, CPS 1, or CPS 10). The number and percentage of positive PD-L1 cases were 34 (22.4%, TPS ≥ 1%) and 59 (38.8%, CPS ≥ 1), respectively. Thirty-three (21.7%) of the cases had high PD-L1 expression (CPS ≥ 10). Half of the platinum-resistant patients (11/22) were PD-L1 positive (CPS ≥ 1). In addition, positive PD-L1 expression (CPS ≥ 1) was related to clinicopathological characteristics that represented a worse prognosis, such as advanced stages, lymph node metastasis, and distant metastasis (p = 0.032, p < 0.001 and p = 0.003, separately). PD-L1 was expressed equally or more in the recurrent lesion compared with its matched primary lesion. CONCLUSIONS: In conclusion, anti-PD-1/PD-L1 inhibitors are a promising therapeutic choice for OCCC. For evaluation of PD-L1 expression, CPS is more recommended than TPS. Evaluation of recurrent lesion was still suitable and predictive when the primary tumor tissue was not available. Distant metastatic lesions can serve as alternative samples for PD-L1 evaluation, while usage of lymphatic metastatic lesions is not recommended.


Subject(s)
Adenocarcinoma, Clear Cell , B7-H1 Antigen , Biomarkers, Tumor , Ovarian Neoplasms , Humans , Female , B7-H1 Antigen/analysis , B7-H1 Antigen/metabolism , Retrospective Studies , Middle Aged , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Adult , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adenocarcinoma, Clear Cell/metabolism , Adenocarcinoma, Clear Cell/pathology , Adenocarcinoma, Clear Cell/drug therapy , Immunohistochemistry , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Aged, 80 and over
19.
Mult Scler Relat Disord ; 88: 105700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880027

ABSTRACT

BACKGROUND: Observational studies have reported that COVID-19 is associated with alterations in retinal layer thickness, including changes in the ganglion cell inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL). However, the causal relationships remain unknown. Therefore, we assessed the direction and strength of the causal relationship between COVID-19 and GCIPL and RNFL thicknesses using a bidirectional two-sample Mendelian randomization (MR) design. METHODS: Data were obtained from a large-scale COVID-19 Host Genetics Initiative (Nsample = 6,512,887), GCIPL dataset (Ncase = 31,434), and RNFL dataset (Ncase = 31,434). The inverse-variance weighted (IVW) method is the primary approach used to estimate causal effects. MR Egger, weighted median, weighted mode, MR Egger (bootstrap), and penalized weighted median methods were applied. Sensitivity analyses were implemented with RadialMR, MRPRESSO, MR-Egger regression, Cochran's Q statistic, leave-one-out analysis, and the funnel plot. RESULTS: Forward MR analysis revealed that genetically identified COVID-19 susceptibility significantly increased the risk of GCIPL thickness (OR = 2.428, 95 % confidence interval [CI]:1.493-3.947, PIVW = 3.579 × 10-4) and RNFL thickness (OR = 1.735, 95 % CI:1.198-2.513, PIVW = 3.580 × 10-3) after Bonferroni correction. Reverse MR analysis did not indicate a significant causal association between GCIPL and RNFL thicknesses and COVID-19 phenotypes. No significant horizontal pleiotropy was found in the sensitivity analysis. CONCLUSIONS: The host genetic liability to COVID-19 susceptibility was causally associated with increased GCIPL and RNFL thicknesses. Documenting this association increases our understanding of the pathophysiological mechanisms underlying COVID -19 susceptibility in retinopathy.


Subject(s)
COVID-19 , Mendelian Randomization Analysis , Humans , Retina/pathology , Retina/diagnostic imaging , Retinal Ganglion Cells/pathology , Genetic Predisposition to Disease , Nerve Fibers/pathology , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide
20.
Cancer Cell Int ; 24(1): 191, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822350

ABSTRACT

Mitogen-activated protein kinase inhibitors (MAPKi) were the first line drugs for advanced melanoma patients with BRAF mutation. Targeted therapies have significant therapeutic effects; however, drug resistance hinders their long-term efficacy. Therefore, the development of new therapeutic strategies against MAPKi resistance is critical. Our previous results showed that MAPKi promote feedback activation of STAT3 signaling in BRAF-mutated cancer cells. Studies have shown that alantolactone inhibited the activation of STAT3 in a variety of tumor cells. Our results confirmed that alantolactone suppressed cell proliferation and promoted apoptosis by inhibiting STAT3 feedback activation induced by MAPKi and downregulating the expression of downstream Oct4 and Sox2. The inhibitory effect of alantolactone combined with a MAPKi on melanoma cells was significantly stronger than that on normal cells. In vivo and in vitro experiments showed that combination treatment was effective against drug-resistant melanomas. Our research indicates a potential novel combination therapy (alantolactone and MAPKi) for patients with BRAF-mutated melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL