Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 303
1.
Cell Discov ; 10(1): 48, 2024 May 07.
Article En | MEDLINE | ID: mdl-38710677

Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.

2.
Curr Biol ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38776901

Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of ß-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.

3.
Curr Genomics ; 25(2): 88-104, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38751598

Objectives: This study aims to assess the prognostic implications of gene signature of the tertiary lymphoid structures (TLSs) in head and neck squamous cell carcinoma (HNSCC) and scrutinize the influence of TLS on immune infiltration. Methods: Patients with HNSCC from the Cancer Genome Atlas were categorized into high/low TLS signature groups based on the predetermined TLS signature threshold. The association of the TLS signature with the immune microenvironment, driver gene mutation status, and tumor mutational load was systematically analyzed. Validation was conducted using independent datasets (GSE41613 and GSE102349). Results: Patients with a high TLS signature score exhibited better prognosis compared to those with a low TLS signature score. The group with a high TLS signature score had significantly higher immune cell subpopulations compared to the group with a low TLS signature score. Moreover, the major immune cell subpopulations and immune circulation characteristics in the tumor immune microenvironment were positively correlated with the TLS signature. Mutational differences in driver genes were observed between the TLS signature high/low groups, primarily in the cell cycle and NRF2 signaling pathways. Patients with TP53 mutations and high TLS signature scores demonstrated a better prognosis compared to those with TP53 wild-type. In the independent cohort, the relationship between TLS signatures and patient prognosis and immune infiltration was also confirmed. Additionally, immune-related biological processes and signaling pathways were activated with elevated TLS signature. Conclusion: High TLS signature is a promising independent prognostic factor for HNSCC patients. Immunological analysis indicated a correlation between TLS and immune cell infiltration in HNSCC. These findings provide a theoretical basis for future applications of TLS signature in HNSCC prognosis and immunotherapy.

4.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710691

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Glycogen Synthase Kinase 3 beta , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Rats , S100 Proteins/metabolism , S100 Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Signal Transduction , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Apoptosis , Cell Line , Cell Hypoxia , Mice, Knockout
5.
Microorganisms ; 12(5)2024 May 13.
Article En | MEDLINE | ID: mdl-38792808

Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. This study was inclined to screen cellulolytic bacteria, conduct genome analysis, mine cellulase-related genes, and optimize cellulase production. The potential carboxymethylcellulose-hydrolyzing bacterial strain Z2.6 was isolated from the maturation phase of pig manure-based compost with algae residuals as the feedstock and identified as Bacillus velezensis. In the draft genome of strain Z2.6, 31 related cellulolytic genes were annotated by the CAZy database, and further validation by cloning documented the existence of an endo-1,4-ß-D-glucanase (EC 3.2.1.4) belonging to the GH5 family and a ß-glucosidase (EC 3.2.1.21) belonging to the GH1 family, which are predominant types of cellulases. Through the exploration of ten factors in fermentation medium with Plackett-Burman and Box-Behnken design methodologies, maximum cellulase activity was predicted to reach 2.98 U/mL theoretically. The optimal conditions achieving this response were determined as 1.09% CMC-Na, 2.30% salinity, and 1.23% tryptone. Validation under these specified conditions yielded a cellulose activity of 3.02 U/mL, demonstrating a 3.43-fold degree of optimization. In conclusion, this comprehensive study underscored the significant capabilities of strain Z2.6 in lignocellulolytic saccharification and its potentialities for future in-depth exploration in biomass conversion.

6.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38557068

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Alkaloids , Quinolizidines , Sophora , Tobacco Mosaic Virus , Antifungal Agents , Sophora/chemistry , Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Seeds/chemistry
7.
Front Microbiol ; 15: 1298262, 2024.
Article En | MEDLINE | ID: mdl-38567072

Introduction: Dietary nutrient content is crucial for energy metabolism and development of gut microbiota. Herein, this study aimed to explore the effects of fat-to-fiber ratios on nutrient transporter, energy metabolism and gut microbiota when ingredients composition was altered. Methods: A total of 240 as-hatched broiler chickens were randomly assigned into three groups including low fat-high dietary fiber (LF-HD), medium fat-medium dietary fiber (MF-MD) and high fat-low dietary fiber (HF-LD), with diets being iso-protein, and broilers were offered the same commercial diets from 21 to 42 d. The data were analyzed using one-way ANOVA of SPSS. Results and Discussion: Results showed that HF-LD diet significantly increased glucose content and decreased triglyceride in serum of broilers (p < 0.05). The mRNA abundance of jejunal gene involved in glucose transporter and tricarboxylic acid (TCA) cycle was significantly increased in broilers fed with HF-LD diets. Compared with LF-HD, HF-LD had a lower abundance of Anaerofilum and CHKCI001, and an increased proportion of beneficial bacteria such as Alistipes, Catenibacillus, Intestinimonas, Lactobacillus, and Peptococcus (p < 0.05). Functional prediction of these microbial changes indicated that HF-LD diet drove caecal microbiota to participate in carbohydrate metabolism and TCA cycle (p < 0.05). Dietary HF-LD-induced microbiota changes were positively correlated with growth performance of broilers (p < 0.05). Therefore, HF-LD diet increased glucose transporters and energy metabolism in intestine and shaped microbial structure and metabolic pathways, which may benefit the growth performance of broilers.

8.
Meat Sci ; 213: 109470, 2024 Jul.
Article En | MEDLINE | ID: mdl-38479133

In this study, we examined the impact of adding Lactobacillus to the diet on fat distribution and meat quality of Sunit lambs. For 90 days, twenty-four lambs (19.31 ± 0.47 kg) were fed diets that contained 0 (NP), 6 (P1), 12 (P2), or 24 (P3) g of Lactobacillus casei/d. The results suggested that dietary supplementation with Lactobacillus decreased serum triglyceride in Sunit lambs (P < 0.001). The loin muscle area displayed notable increases in the P1 group (P < 0.05). Meanwhile, tail and visceral fat deposition of lambs were reduced when Lactobacillus was added to the diet (P < 0.05). Compared with the NP group, the values of shear force and cooking loss of in the P1 group exhibited a significant reduction, and intramuscular fat content increased significantly (P < 0.05). Additionally, the P1 group showed an increase in polyunsaturated fatty acids and a decrease in saturated fatty acids in the longissimus thoracis and biceps femoris muscles (P < 0.05). The P1 group showed downregulation of protein kinase AMP-activated catalytic subunit alpha 2 (AMPKα2) and carnitine palmitoyltransferase 1B expression in the longissimus thoracis muscle (P < 0.05). However, there was an upregulation of acetyl-CoA carboxylase (ACC), sterol regulatory element binding transcription factor 1 (SREBF1), and fatty acid synthase (FASN) expression (P < 0.05). In conclusion, feeding Sunit lambs 6 g/d of Lactobacillus as a dietary supplement may be a valuable way to improve fat distribution and meat quality. The AMPK/ACC and AMPK/SREBF1/FASN signaling pathways may be involved in this outcome.


Animal Feed , Diet , Muscle, Skeletal , Red Meat , Sheep, Domestic , Animals , Diet/veterinary , Animal Feed/analysis , Muscle, Skeletal/chemistry , Red Meat/analysis , Male , Dietary Supplements , Adipose Tissue , Lacticaseibacillus casei , Fatty Acids/analysis , Triglycerides/blood , Cooking
9.
Nutr J ; 23(1): 39, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520010

BACKGROUND: Modifying diet is crucial for diabetes and complication management. Numerous studies have shown that adjusting eating habits to align with the circadian rhythm may positively affect metabolic health. However, eating midpoint, eating duration, and their associations with diabetic kidney disease (DKD) are poorly understood. METHODS: The National Health and Nutrition Examination Survey (2013-2020) was examined for information on diabetes and dietary habits. From the beginning and ending times of each meal, we calculated the eating midpoint and eating duration. Urinary albumin-to-creatinine ratio (UACR) ≥ 30 mg/g and/or estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 were the specific diagnostic criteria for DKD. RESULTS: In total, details of 2194 subjects with diabetes were collected for analysis. The overall population were divided into four subgroups based on the eating midpoint quartiles. The prevalence of DKD varied noticeably (P = 0.037) across the four categories. When comparing subjects in the second and fourth quartiles of eating midpoint to those in the first one, the odds ratios (ORs) of DKD were 1.31 (95% CI, 1.03 to 1.67) and 1.33 (95% CI, 1.05 to 1.70), respectively. And after controlling for potential confounders, the corresponding ORs of DKD in the second and fourth quartiles were 1.42 (95% CI, 1.07 to 1.90) and 1.39 (95% CI, 1.04 to 1.85), respectively. CONCLUSIONS: A strong correlation was found between an earlier eating midpoint and a reduced incidence of DKD. Eating early in the day may potentially improve renal outcomes in patients with diabetes.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Nutrition Surveys , Cross-Sectional Studies , Kidney , Glomerular Filtration Rate , Diabetes Mellitus, Type 2/complications
10.
Food Chem ; 446: 138763, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38428077

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Calcium , Osteoporosis , Rats , Animals , Sheep , Calcium/metabolism , Protein Hydrolysates/pharmacology , Calcium Chloride/pharmacology , Calcium, Dietary , Bone Density , Osteoporosis/metabolism , Diet
12.
J Agric Food Chem ; 72(9): 5047-5061, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38394631

As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 µg/mL, which was better than that of the positive control, ningnanmycin (86.03 µg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 µg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 µg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.


Fabaceae , Fungicides, Industrial , Insecticides , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Quinolizidine Alkaloids , Insecticides/pharmacology , Insecticides/chemistry , Antiviral Agents/pharmacology , Structure-Activity Relationship
13.
Nanomaterials (Basel) ; 14(2)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38251169

Dielectric materials with superb thermal and electrical properties are highly desired for high-voltage electrical equipment and advanced electronics. Here, we propose a novel strategy to improve the performance of epoxy composites by employing boron nitride nanosheets (BNNSs) and γ-glycidyl ether oxypropyl sesimoxane (G-POSS) as functional fillers. The resultant ternary epoxy composites exhibit high electrical resistivity (1.63 × 1013 Ω·cm) and low dielectric loss (<0.01) due to the ultra-low dielectric constants of cage-structure of G-POSS. In addition, a high thermal conductivity of 0.3969 W·m-1·K-1 is achieved for the epoxy composites, which is 114.66% higher than that of pure epoxy resin. This can be attributed to the high aspect ratio and excellent thermally conductive characteristics of BNNSs, promoting phonon propagation in the composites. Moreover, the epoxy composite simultaneously possesses remarkable dynamic mechanical properties and thermal stability. It is believed that this work provides a universal strategy for designing and fabricating multifunctional composites using a combination of different functional fillers.

14.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article En | MEDLINE | ID: mdl-38203853

The scarcity of donor kidneys greatly impacts the survival of patients with end-stage renal failure. Pigs are increasingly becoming potential organ donors but are limited by immunological rejection. Based on the human kidney organoid already established with the CHIR99021 and FGF9 induction strategy, we generated porcine kidney organoids from porcine naïve-like ESCs (nESCs). The derived porcine organoids had a tubule-like constructure and matrix components. The porcine organoids expressed renal markers including AQP1 (proximal tubule), WT1 and PODO (podocyte), and CD31 (vascular endothelial cells). These results imply that the organoids had developed the majority of the renal cell types and structures, including glomeruli and proximal tubules. The porcine organoids were also identified to have a dextran absorptive function. Importantly, porcine organoids have a certain abundance of vascular endothelial cells, which are the basis for investigating immune rejection. The derived porcine organoids might serve as materials for immunosuppressor screening for xenotransplantation.


Endothelial Cells , Kidney Failure, Chronic , Humans , Swine , Animals , Kidney , Organoids , Embryonic Stem Cells
15.
Gene ; 897: 148048, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38042212

C-reactive protein (CRP) belongs to the short-chain pentraxin family and functions as a soluble pattern recognition molecule (PRM) aiding in host defense against pathogens. In the present study, a CRP gene, designated HoCRP, was cloned from Hexagrammos otakii for the first time. The full length of the HoCRP cDNA sequence is 821 bp, which contains an open reading frame (ORF) of 675 bp encoding a 224 amino acid protein. The deduced protein is predicted to have a theoretical isoelectric point (pI) of 5.30 and a molecular weight of 25.4 kDa. The recombinant HoCRP protein (rHoCRP) was expressed in E. coli to further characterize the functions of HoCRP. Saccharide binding experiments demonstrated that rHoCRP exhibited a high affinity for various pathogen-associated molecular patterns (PAMPs). Furthermore, bacterial binding and agglutination assays indicated that rHoCRP had the capability to recognize a wide spectrum of microorganisms. These findings suggest that HoCRP functions not only as a PRM for binding PAMPs but also as an immune effector molecule. Considering the role CRP plays in the classical complement pathway, the interaction between rHoCRP and rHoC1q was assessed and proven by a Pull-down and Elisa assay, which implied that rHoCRP may be able to activate complement. In addition, phagocytosis enhancement by rHoCRP in the presence or absence of complement components was analysed by flow cytometry. The results showed that rHoCRP could synergistically enhance the phagocytosis of RAW264.7 cells with complement, providing further evidence of complement activation by rHoCRP through the opsonization of specific complement components. In summary, our findings suggest that rHoCRP may play a crucial role in host antibacterial defense by recognizing pathogens, activating the complement system, and enhancing macrophage function.


C-Reactive Protein , Perciformes , Animals , C-Reactive Protein/genetics , Amino Acid Sequence , Escherichia coli/metabolism , Pathogen-Associated Molecular Pattern Molecules , Recombinant Proteins/metabolism , Phagocytosis , Perciformes/metabolism
16.
Int J Biol Macromol ; 256(Pt 2): 128527, 2024 Jan.
Article En | MEDLINE | ID: mdl-38040140

An effective treatment for some disease, such as the model disease acute retinal necrosis (ARN), requires a combination of different drugs which should be administered at a certain interval. The precise sequential and long-term drug release are the critical questions. In this work, the as-prepared chitosan nanoparticles (CS-NPs) coated with hyaluronic acid (HA) were embedded in the aldehyde ß-cyclodextrin (ACD)/aminated hyaluronic acid (NHA) hydrogels to synthesize injectable hydrogels loaded with dual drugs named DEX-CS-NPs/GCV-Gel and HA-DEX-CS-NPs/GCV-Gel. In the first 24 h and 48 h, the releases of DEX from DEX-CS-NPs/GCV-Gel were 128.5 % and 82.8 % faster than those from HA-DEX-CS-NPs/GCV-Gel, respectively. There was no DEX released from HA-DEX-CS-NPs/GCV-Gel at the first 7 h, which has never been reported before, although some hydrogel systems loaded with different drugs release different drugs simultaneously at different rate which have been well studied. This is a good start of a precise sequence release. The composite hydrogels possessed appropriate rheology, gel time, degradation performance, and ideal cytocompatibility. The injectable hydrogel loaded with dual drugs presenting a precise sequential and long-term release has great potential in the treatment of diseases requiring combinations of drugs being released sequentially at different treating stages.


Chitosan , Nanoparticles , Hydrogels , Hyaluronic Acid , Drug Liberation
17.
Adv Mater ; 36(9): e2307849, 2024 Mar.
Article En | MEDLINE | ID: mdl-37873917

The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.

18.
Food Chem ; 440: 138193, 2024 May 15.
Article En | MEDLINE | ID: mdl-38128427

The heterocyclic amine 2-amino-1-methyl-6-phenyl-imidazolium [4, 5-B] pyridine (PhIP), commonly found in roasted meat products, is considered a potential carcinogen. This study is to explore the underlying mechanisms involved in the adsorption of PhIP by lactic acid bacteria 37X-15 and its peptidoglycan. The scanning electron microscope results suggested that the strain's adsorption on PhIP occurs on the cell wall, primarily composed of peptidoglycan. The fourier-transformed infrared spectroscopy results indicated that PhIP adsorption by both lactic acid bacteria 37X-15 and its peptidoglycan primarily involved OH and NH binding groups. Different adsorption conditions affected the adsorption rate of PhIP by peptidoglycan. The optimal values for each adsorption condition were 2 h, 37 °C, and pH 6 when the maximum adsorption rate reached. This study provides a new direction for the application of lactic acid bacteria and its peptidoglycan in food safety.


Imidazoles , Lactobacillales , Peptidoglycan , Lactobacillales/metabolism , Adsorption , Carcinogens/metabolism , Pyridines
19.
Fish Physiol Biochem ; 50(2): 513-526, 2024 Apr.
Article En | MEDLINE | ID: mdl-38103084

Peroxiredoxin1(Prx1), also known as natural killer enhancing factor A (NKEF-A), is a crucial antioxidant involving in various cellular activities and immune response against bacterial and viral infection in fish. In the present study, a full-length Prx1 cDNA sequence (TfPrx1) was firstly cloned from roughskin sculpin (Trachidermus fasciatus), which was composed of 1044 bp nucleotides encoding a peptide of 199 amino acids with a molecular weight of 22.35 kDa and a theoretical pI of 6.42, respectively. The predicted peptide was a typical 2-cys Prx containing two conserved characteristic motifs 43FYPLDFTFVCPTEI56 and 170GEVCPA175 with the two conserved peroxidatic and resolving cysteine residuals forming disulfide bond. Quantitative real-time PCR analysis showed that TfPrx1 was ubiquitously expressed in all tested tissues with the highest expression in the intestine. It could be significantly induced following LPS injection and heavy metal exposure. Recombinant TfPrx1 (rTfPrx1) displayed insulin disulfide reduction and ROS-scavenging activity in a concentration-dependent manner, and further exhibited DNA and cytoprotective effects under oxidative stress. These results suggested that TfPrx1 protein may play an important role in fish immune protection from oxidative damage.


Perciformes , Peroxiredoxins , Animals , Amino Acid Sequence , Base Sequence , Sequence Alignment , Peroxiredoxins/genetics , Peroxiredoxins/chemistry , Perciformes/genetics , Fishes/genetics , Peptides/genetics , Disulfides , Phylogeny
20.
Molecules ; 28(24)2023 Dec 17.
Article En | MEDLINE | ID: mdl-38138627

Anthraquinones are bioactive natural products, which are often found in medicinal herbs. These compounds exert antioxidant-related pharmacological actions including neuroprotective effects, anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits from their pharmacological use, recently, there was an upsurge in the development and utilization of anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was carried out on their antioxidant activities and the structure-activity relationships. The antioxidant mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS, antioxidants are essential for human health. Therefore, the development of reagents that regulate the imbalance between ROS formation and elimination should be more extensive and rational, and the exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and ideas for various diseases mediated by ROS.


Anthraquinones , Antioxidants , Humans , Antioxidants/pharmacology , Reactive Oxygen Species , Anthraquinones/pharmacology , Anthraquinones/chemistry , Structure-Activity Relationship
...