Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 271: 125716, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38301373

ABSTRACT

Mitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-ß oligomers (AßOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AßOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I). CHC-NS4 possesses excellent ratiometric response, high selectivity to Cu(I) and specific ability to target mitochondria. Under mitochondrial dysfunction induced by oligomycin, mitochondrial Cu(I) levels gradually increased, which may be related to inhibition of ATP7A-mediated Cu(I) exportation and/or high expression of COX. On this basis, CHC-NS4 was further utilized to visualize the fluctuations of mitochondrial Cu(I) levels during progression of AD model cells induced by AßOs. It was found that mitochondrial Cu(I) levels were gradually elevated during the AD progression, which depended on not only AßOs concentration but also incubation time. Moreover, endocytosis maybe served as a prime pathway mode for mitochondrial Cu(I) dyshomeostasis induced by AßOs during AD progression. These results have provided a novel inspiration into mitochondrial copper biology in AD pathogenesis.


Subject(s)
Alzheimer Disease , Mitochondrial Diseases , Humans , Alzheimer Disease/metabolism , Copper/metabolism , Amyloid beta-Peptides/metabolism , Fluorescent Dyes/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism
2.
Chem Commun (Camb) ; 59(30): 4483-4486, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36967657

ABSTRACT

A silicon nanowire-based fluorescence lifetime thermometer (NWFLT) was fabricated for the simultaneous measurement of intra- and extra-cellular temperatures. Using the NWFLT, an obvious heterogeneity of the temperature was found along the longitude direction of the NWFLT, especially between the inside and outside of the cell.

3.
Anal Chem ; 94(34): 11813-11820, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35925790

ABSTRACT

Simultaneous monitoring of the ATP levels at various sites of a single cell is crucial for revealing the ATP-related processes and diseases. In this work, we rationally fabricated single nanowire-based fluorescence biosensors, by which the ATP levels of the cytoplasm and nucleus in a single cell can be simultaneously monitored with a high spatial resolution. Utilizing the as-fabricated single nanowire biosensor, we demonstrated that the ATP levels of the cytoplasm were around 20-30% lower than that of the nucleus in both L929 and HeLa cells. Observing the ATP fluctuation of the cytoplasm and nucleus of the L929 and HeLa cells stimulated by Ca2+, oligomycin, or under cisplatin-induced apoptosis, we found that the ATP levels at two cellular sites exhibited discriminative changes, revealing the different mechanisms of the ATP at these two cellular sites in response to the stimulations.


Subject(s)
Biosensing Techniques , Nanowires , Adenosine Triphosphate , Cytoplasm , HeLa Cells , Humans
4.
Anal Chem ; 93(45): 15072-15079, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34617743

ABSTRACT

Detecting the temperature of intracellular mitochondria with high sensitivity and stability is crucial to understanding the cellular metabolism and revealing the processes of mitochondria-related physiology. In this paper, employing the long fluorescence lifetime of modified Au nanoclusters (mAuNCs) by 4-(carboxybutyl) triphenylphosphonium bromide, we developed a fluorescence lifetime thermometer with high sensitivity and stability for the temperature of the intracellular mitochondria. A high relative temperature sensitivity of 2.8% and excellent photostability were achieved from the present thermometer. After incubation with L929 cells, the mAuNCs could be endocytosed into the cells and targeted the mitochondria, and the temperature changes at the L929 cells' mitochondria, which were stimulated by carbonyl cyanide 3-chlorophenylhydrazone and Ca2+, were successfully detected via the fluorescence lifetime images of the mAuNCs. Furthermore, utilizing the mAuNCs, we clarified the effect of Mg2+ on the temperature of the intracellular mitochondria. The strategy of employing a material with a long fluorescence lifetime and remarkable stability to fabricate the fluorescence lifetime thermometer for mitochondria can be used to design various thermometers for other organelles.


Subject(s)
Mitochondria , Thermometers , HeLa Cells , Humans , Spectrometry, Fluorescence , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL