Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 923
Filter
1.
Molecules ; 29(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39339323

ABSTRACT

Sulforaphene (4-methylsufinyl-3-butenyl isothiocyanate, SFE), produced by myrosinase hydrolysis of glucoraphenin (4-methylsulfinyl-3-butenyl glucosinolate) found in radish seeds, is strongly associated with cancer prevention. In this study, we investigated the stability of SFE (purity above 98%) under various thiol-containing compounds at 25 °C, such as sodium hydrosulfide (NaHS), glutathione (GSH), and cysteine (Cys). We observed that the degradation of SFE was closely related to the presence and dissociation capacity of thiol-containing compounds in the solution, particularly the thiol group. We found that the degradation rate of SFE was influenced by incubation with NaHS, GSH, and Cys, with distinct degradation products detected for each of these thiol-containing compounds. Compared to GSH, sulfide and Cys played important roles in promoting the degradation of SFE. Furthermore, we found substantial quantities of hydrogen sulfide in conjunction with SFE during the hydrolysis process of seeds, and a heat treatment of the seeds resulted in increased production of SFE. However, the introduction of sulfide-oxidizing bacteria to the hydrolytic system did not exhibit any inhibitory effect on the degradation of SFE. These results provided a guideline for industries to improve the stability of SFE during preparation.


Subject(s)
Isothiocyanates , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Hydrolysis , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Cysteine/chemistry , Cysteine/analogs & derivatives , Seeds/chemistry , Glutathione/metabolism , Glutathione/chemistry , Raphanus/chemistry , Hydrogen Sulfide/chemistry
2.
Biomater Transl ; 5(1): 3-20, 2024.
Article in English | MEDLINE | ID: mdl-39220661

ABSTRACT

Reconstruction of bone defects or fractures caused by ageing, trauma and tumour resection is still a great challenge in clinical treatment. Although autologous bone graft is considered as gold standard, the source of natural bone is limited. In recent years, regenerative therapy based on bioactive materials has been proposed for bone reconstruction. Specially, numerous studies have indicated that bioactive ceramics including silicate and phosphate bioceramics exhibit excellent osteoinductivity and osteoconductivity, further promote bone regeneration. In addition, magnesium (Mg) element, as an indispensable mineral element, plays a vital role in promoting bone mineralisation and formation. In this review, different types of Mg-containing bioceramics including Mg-containing calcium phosphate-based bioceramics (such as Mg-hydroxyapatite, Mg-biphasic calcium phosphate), Mg-containing calcium silicate-based bioceramics (such as Mg2SiO4, Ca2MgSi2O7 and Mg-doped bioglass), Mg-based biocements, Mg-containing metal/polymer-bioceramic composites were systematacially summarised. Additionally, the fabrication technologies and their materiobiological effects were deeply discussed. Clinical applications and perspectives of magnesium-containing bioceramics for bone repair are highlighted. Overall, Mg-containing bioceramics are regarded as regenerative therapy with their optimised performance. Furthermore, more in-depth two-way researches on their performance and structure are essential to satisfy their clinical needs.

3.
Adv Food Nutr Res ; 112: 385-433, 2024.
Article in English | MEDLINE | ID: mdl-39218507

ABSTRACT

BACKGROUND: Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH: The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS: By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.


Subject(s)
Precision Medicine , Humans , Dietary Supplements , Nutritional Status , Food, Fortified , Functional Food
4.
Ultrason Imaging ; : 1617346241276168, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39257175

ABSTRACT

We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enrolled 155 patients with pathologically confirmed breast cancer who underwent NAC. The patients were randomly divided into the training set and the validation set in the ratio of 7:3. The deep learning and radiomics features of pre-treatment ultrasound images were extracted, and the random forest recursive elimination algorithm and the least absolute shrinkage and selection operator were used for feature screening and DL-Score and Rad-Score construction. According to multifactorial logistic regression, independent clinical predictors, DL-Score, and Rad-Score were selected to construct the comprehensive prediction model DLRC. The performance of the model was evaluated in terms of its predictive effect, and clinical practicability. Compared to the clinical, radiomics (Rad-Score), and deep learning (DL-Score) models, the DLRC accurately predicted the pCR status, with an area under the curve (AUC) of 0.937 (95%CI: 0.895-0.970) in the training set and 0.914 (95%CI: 0.838-0.973) in the validation set. Moreover, decision curve analysis confirmed that the DLRC had the highest clinical value among all models. The comprehensive model DLRC based on ultrasound radiomics, deep learning, and clinical features can effectively and accurately predict the pCR status of breast cancer after NAC, which is conducive to assisting clinical personalized diagnosis and treatment plan.

5.
Br J Sports Med ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242178

ABSTRACT

OBJECTIVE: To compare the efficacy of exercise, metformin and their combination on glucose metabolism in individuals with abnormal glycaemic control. DESIGN: Systematic review and network meta-analysis. DATA SOURCES: Embase, Web of Science, PubMed/MEDLINE and SPORTDiscus. ELIGIBILITY CRITERIA: Randomised controlled trials involving exercise, metformin or their combined treatments in individuals with prediabetes or type 2 diabetes mellitus (T2DM) were included. Outcomes included haemoglobin A1c (HbA1c), 2-hour glucose during oral glucose tolerance test, fasting glucose, fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS: 407 articles with 410 randomised controlled trials (n=33 802) were included. In prediabetes, the exercise showed greater efficacy than metformin on HbA1c levels (mean difference -0.16%, 95% CI (-0.23 to -0.09) vs -0.10%, 95% CI (-0.21 to 0.02)), 2-hour glucose (-0.68 mmol/L, 95% CI (-0.97 to -0.39) vs 0.01 mmol/L, 95% CI (-0.38 to 0.41)) and HOMA-IR (-0.54, 95% CI (-0.71 to -0.36) vs -0.23, 95% CI (-0.55 to 0.10)), while the efficacy on fasting glucose was comparable (-0.26 mmol/L, 95% CI (-0.32 to -0.19) vs -0.33 mmol/L, 95% CI (-0.45 to -0.21)). In T2DM, metformin was more efficacious than exercise on HbA1c (-0.88%, 95% CI (-1.07 to -0.69) vs -0.48%, 95% CI (-0.58 to -0.38)), 2-hour glucose (-2.55 mmol/L, 95% CI (-3.24 to -1.86) vs -0.97 mmol/L, 95% CI (-1.52 to -0.42)) and fasting glucose (-1.52 mmol/L, 95% CI (-1.73 to -1.31) vs -0.85 mmol/L, 95% CI (-0.96 to -0.74)); exercise+metformin also showed greater efficacy in improving HbA1c (-1.23%, 95% CI (-2.41 to -0.05)) and fasting glucose (-2.02 mmol/L, 95% CI (-3.31 to -0.74)) than each treatment alone. However, the efficacies were modified by exercise modality and metformin dosage. CONCLUSION: Exercise, metformin and their combination are efficacious in improving glucose metabolism in both prediabetes and T2DM. The efficacy of exercise appears to be superior to metformin in prediabetes, but metformin appears to be superior to exercise in patients with T2DM. PROSPERO REGISTRATION NUMBER: CRD42023400622.

6.
J Sci Food Agric ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230201

ABSTRACT

BACKGROUND: Food safety is pivotal for public welfare and directly impacts consumer health. Food safety sampling inspections (FSSIs) are essential in detecting unqualified food products and non-compliant manufacturers, which form an integral part of government regulatory frameworks. However, given the constraints on budgetary resources, improving the efficiency of food safety sampling inspections (EFSSIs) remains a considerable challenge in China's food quality and safety supervision. This study aims to apply Pareto's law, starting from the examination of food sample testing items and major hazard types, to theoretically analyze methods for improving the EFSSIs. Following the theoretical analysis, the research employs provincial food sampling data from China in 2022 to empirically validate the proposed improvement strategies. RESULTS: The research findings indicate that applying Pareto's law significantly reduces the number of items that should be tested for each food subcategory, effectively lowering testing costs for each batch of food samples. Theoretically, employing Pareto's law in sampling inspections can increase the EFSSIs to 2.78 times the current observed level. Furthermore, empirical validation using food sampling data confirms that EFSSIs can be improved to 2.12 times the existing level, consistent with theoretical predictions. CONCLUSION: Implementing Pareto's law in FSSIs facilitates the detection of more unqualified food products and non-compliant manufacturers without additional financial burden, significantly enhancing the EFSSIs. This approach provides an innovative strategy for government to bolster their food safety management efforts. © 2024 Society of Chemical Industry.

7.
Gerontol Geriatr Med ; 10: 23337214241278497, 2024.
Article in English | MEDLINE | ID: mdl-39238650

ABSTRACT

Objective: To identify the risk factors contributing to cerebral microbleeds (CMBs), analyze the correlation between the quantity and distribution of CMBs and overall cognitive performance, including specific cognitive domains in patients, and investigate the underlying mechanisms by which CMBs impact cognitive function. Methods: Patients diagnosed with cerebral small vessel disease were recruited between September 2022 and September 2023. Clinical baseline data were systematically gathered. The Montreal Cognitive Assessment (MoCA) was employed to evaluate patients' cognitive status. CMBs were identified via susceptibility-weighted imaging (SWI), noting their locations and quantities. Patients were categorized into two cohorts: those without CMBs and those with CMBs. This division facilitated the comparison of basic clinical data and laboratory indicators, aiming to elucidate the risk factors associated with CMBs. Within the CMBs cohort, patients were further classified based on the number of CMBs into mild, moderate, and severe groups, and according to CMBs' locations into deep, cortical-subcortical, and mixed groups. Spearman correlation analysis and ANOVA were utilized to compare the total MoCA scores, as well as scores in specific cognitive domains, across these groups. This approach enabled the analysis of the relationship between the quantity and location of CMBs and cognitive impairment. Results: Statistically significant differences were noted between patients with and without cerebral microbleeds (CMBs) regarding gender, age, hypertension, diabetes, history of cerebral infarction, history of alcohol consumption, glycosylated hemoglobin levels, low-density lipoprotein cholesterol, and homocysteine levels (p < .05). Multifactorial logistic regression analysis identified age, hypertension, diabetes, history of alcohol consumption, and elevated homocysteine as independent risk factors for the development of CMBs. Spearman correlation analysis revealed a linear correlation between the presence of CMBs and the total score of the MoCA (r = -.837, p < .001). The group with CMBs demonstrated a significant decline in visuospatial execution function and delayed recall abilities compared to the group without CMBs (p < .05). Specifically, deep CMBs were linked to impairments in visuospatial execution function, naming, attention, computational ability, language, delayed recall, and orientation (p < .05). Cortical-subcortical CMBs affected visuospatial execution function, attention, computational ability, and delayed recall ability(p < .05). Mixed CMBs impacted visuospatial execution function and naming (p < .05). Conclusion: Age, hypertension, diabetes, history of alcohol consumption, and elevated homocysteine levels are key independent risk factors for CMBs. There exists a linear relationship between the severity of CMBs and the extent of cognitive impairment. Patients with CMBs show notable deterioration in visuospatial execution function and delayed recall abilities. Furthermore, the location of CMBs influences various specific cognitive domains.

8.
Sensors (Basel) ; 24(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39275394

ABSTRACT

When using transformer insulation oil as a liquid dielectric, the oil is easily polluted by the solid particles generated in the operation of the transformer, and these metallic impurity particles have a significant impact on the insulation performance inside the power transformer. The force of the metal particles suspended in the flow insulation oil is multidimensional, which will lead to a change in the movement characteristics of the metal particles. Based on this, this study explored the motion rules of suspended metallic impurity particles in mobile insulating oil in different electric field environments and the influencing factors. A multiphysical field model of the solid-liquid two-phase flow of single-particle metallic impurity particles in mobile insulating oil was constructed using the dynamic analysis method, and the particles' motion characteristics in the oil in different electric field environments were simulated. The motion characteristics of metallic impurity particles under conditions of different particle sizes, oil flow velocities, and insulation oil qualities and influencing factors were analyzed to provide theoretical support for the detection of impurity particles in transformer insulation oil and enable accurate estimations of the location of equipment faults. Our results show that there are obvious differences in the trajectory of metallic impurity particles under different electric field distributions. The particles will move towards the region of high field intensity under an electric field, and the metallic impurity particles will not collide with the electrode under an AC field. When the electric field intensity and particle size increase, the trajectory of the metallic impurity particles between electrodes becomes denser, and the number of collisions between particles and electrodes and the motion speed both increase. Under the condition of a higher oil flow velocity, the number of collisions between metal particles and electrodes is reduced, which reduces the possibility of particle agglomeration. When the temperature of the insulation oil changes and the quality deteriorates, its dynamic viscosity changes. With a decrease in the dynamic viscosity of the insulation oil, the movement of the metallic impurity particles between the electrodes becomes denser, the collision times between the particles and electrodes increase, and the maximum motion speed of the particles increases.

9.
Small ; : e2407359, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308281

ABSTRACT

Against the backdrop of rapid advancements in 5G and Internet of Things (IoT) technologies, there is an urgent need to upgrade food sensing systems to achieve automation, digitalization, and intelligence. However, this transformation process faces numerous challenges. Triboelectric nanogenerators (TENGs), as an emerging energy conversion and sensing technology, play a crucial role in this context. They not only provide power to functional devices but also serve as sensors in multifunctional self-powered food sensing systems, capable of detecting various physical and chemical information. This review explores the development of TENGs in the field of food sensing, focusing on the working principles of their self-powered sensing. The review also systematically organizes and classifies the material and device designs used for TENGs in various food applications. Based on the performance of TENGs, a detailed introduction is provided on the specific applications of self-powered food sterilization, self-powered food quality monitoring, and self-powered taste sensing in the field of food safety. Finally, this paper discusses the challenges and corresponding strategies of TENGs in the food sensing field. The aim is to further promote unmanned and smart services and management in the food sector and to provide new research perspectives.

10.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39338381

ABSTRACT

BACKGROUND: Arterial thrombosis, a condition in which thrombi form in arteries, can lead to various acute cardiovascular diseases and impact the quality of life and survival of patients. Berberine (BBR), a quaternary ammonium alkaloid, has been shown to treat these diseases. However, further exploration is needed to understand underlying mechanisms of BBR. METHODS AND RESULTS: Rats were administered BBR via intramuscular injection. Then, an FeCl3-coated filter paper was applied to a carotid artery to induce thrombosis. The size of the thrombus and the blood flow velocity were evaluated by carotid ultrasound. The shape of the thrombus was observed using staining and microscopy. The expression levels of mRNA and proteins were verified. Additionally, mass spectrometry and single-cell RNA sequencing analysis were conducted. The administration of BBR resulted in a significant reduction in the thrombus area and an extension of the thrombus-clogging time. Furthermore, BBR administration effectively reversed the decreasing tissue-plasminogen activator (t-PA) expression and alterations in fibrinolysis system of model group. Additionally, the expression of PKM2 was suppressed following BBR administration, and the overexpression of PKM2 inhibited t-PA expression. CONCLUSIONS: BBR ameliorates thrombosis by modulating expression of PKM2, subsequently impacting the expression of t-PA within fibrinolytic system. These preliminary findings suggest that BBR could be a potential preventive and therapeutic strategy for arterial thromboembolic diseases.

11.
Exp Neurol ; 380: 114910, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098715

ABSTRACT

Structural and functional alterations in brain microvascular endothelial cells (BMECs) caused by oxygen-glucose deprivation (OGD) are involved in the pathogenesis of various brain disorders. AlkB homolog 5 (ALKBH5) is a primary m6A demethylase that regulates various cell processes, but its distinct roles in BMEC function remain to be clarified. In the present study, in mouse middle cerebral artery occlusion (MCAO) model, knockout of ALKBH5 reduced neurological deficits, infarct volumes and tissue apoptosis caused by ischemia/reperfusion injury. Evans blue leakage and decreased expression of the tight junction protein ZO-1 and Occludin were also attenuated by ALKBH5 knockout. During the exploration of the underlying mechanisms of the role of ALKBH5 in BMECs, we found that the expression of ALKBH5 was induced at both the mRNA and protein levels by hypoxia; however, its protein stability was impaired by OGD treatment. Knockdown of ALKBH5 expression increased total m6A levels and alleviated OGD-induced BMEC injury. At the same time, the selective ALKBH5 inhibitor Cpd 20m also exhibited a protective effect on cell injury. In contrast, overexpression of ALKBH5 increased the sensitivity of BMECs to OGD. Interestingly, the m6A sequencing data revealed that knockdown of ALKBH5altered the expression of many genes via m6A upregulation. The gene expression alterations were verified by real-time PCR. Taken together, our results suggest that ALKBH5, as well as its target genes, plays important roles in the regulation of brain microvascular endothelial cell function through its RNA demethylase activity.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Endothelial Cells , Glucose , Mice, Knockout , Animals , Mice , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Endothelial Cells/metabolism , Glucose/deficiency , Brain/metabolism , Brain/pathology , Male , Microvessels/pathology , Microvessels/metabolism , Mice, Inbred C57BL , Oxygen/metabolism , Infarction, Middle Cerebral Artery/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
12.
ACS Appl Mater Interfaces ; 16(32): 42189-42197, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093830

ABSTRACT

Pure sulfur (S8 and Li2S) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm-2 attaining areal capacities of ∼4 mAh cm-2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm-2 achieving cathode areal capacities above 6 mAh cm-2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:Li2S cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.

13.
Aging Clin Exp Res ; 36(1): 165, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120630

ABSTRACT

BACKGROUND: We aimed to explore the association of sleep duration with depressive symptoms among rural-dwelling older adults in China, and to estimate the impact of substituting sleep with sedentary behavior (SB) and physical activity (PA) on the association with depressive symptoms. METHODS: This population-based cross-sectional study included 2001 rural-dwelling older adults (age ≥ 60 years, 59.2% female). Sleep duration was assessed using the Pittsburgh Sleep Quality Index. We used accelerometers to assess SB and PA, and the 15-item Geriatric Depression Scale to assess depressive symptoms. Data were analyzed using restricted cubic splines, compositional logistic regression, and isotemporal substitution models. RESULTS: Restricted cubic spline curves showed a U-shaped association between daily sleep duration and the likelihood of depressive symptoms (P-nonlinear < 0.001). Among older adults with sleep duration < 7 h/day, reallocating 60 min/day spent on SB and PA to sleep were associated with multivariable-adjusted odds ratio (OR) of 0.81 (95% confidence interval [CI] = 0.78-0.84) and 0.79 (0.76-0.82), respectively, for depressive symptoms. Among older adults with sleep duration ≥ 7 h/day, reallocating 60 min/day spent in sleep to SB and PA, and reallocating 60 min/day spent on SB to PA were associated with multivariable-adjusted OR of 0.78 (0.74-0.84), 0.73 (0.69-0.78), and 0.94 (0.92-0.96), respectively, for depressive symptoms. CONCLUSIONS: Our study reveals a U-shaped association of sleep duration with depressive symptoms in rural older adults and further shows that replacing SB and PA with sleep or vice versa is associated with reduced likelihoods of depressive symptoms depending on sleep duration.


Subject(s)
Depression , Exercise , Rural Population , Sedentary Behavior , Sleep , Humans , Female , Male , Aged , Depression/epidemiology , Cross-Sectional Studies , Exercise/physiology , Middle Aged , Sleep/physiology , China/epidemiology , Aged, 80 and over , Data Analysis
14.
Inorg Chem ; 63(35): 16224-16232, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39151039

ABSTRACT

In recent years, low-dimensional organic-inorganic hybrid metal halides have garnered significant attention for optoelectronic applications due to their exceptional photophysical properties, despite their persistent challenge of low stability. Addressing this challenge, our study introduces 1-[5-(trifluoromethyl)pyridin-2-yl]piperazinium (TFPP) as a cation, harvesting a novel one-dimensional hybrid cadmium-based halide semiconductor (TFPP)CdCl4, which exhibits intense blue-light emission upon UV excitation. Additionally, (TFPP)CdCl4 demonstrates a high scintillation performance under X-ray excitation, producing 16600 ± 500 photons MeV-1 and achieving a low detection limit of 0.891 µGyair s-1. Notably, (TFPP)CdCl4 showcases remarkable stability against water, intense light sources, heating, and corrosive environments, positioning it as a promising candidate for optoelectronic applications. Through a blend of experimental techniques and theoretical analyses, including density functional theory calculations, we elucidate the unique photophysical properties and structural stability of (TFPP)CdCl4. These findings significantly contribute to the understanding of low-dimensional hybrid halide semiconductors, offering valuable insights into their potential application in advanced optoelectronic devices and paving the way for further research in this field.

15.
Food Chem Toxicol ; 192: 114908, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39117098

ABSTRACT

Contaminated foods are a major source of bisphenol A (BPA) and are widely used in food packaging. Prolonged exposure to BPA can cause reproductive dysfunction in humans. Procyanidine (PC) is a potent natural antioxidant; however, the exact mechanism by which PC mitigates Leydig cell damage caused by BPA is unknown. In this study, the protective effect of PC against BPA-induced TM3 cell damage was investigated, and the underlying mechanism was assessed. PC treatment attenuates BPA-induced TM3 cell damage by suppressing oxidative stress and inhibiting TM3 apoptosis. In addition, PC upregulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant target genes. Treatment with the NRF2 inhibitor ML385 reversed the PC-induced upregulation of the mRNA expression of these genes. Overall, PC may mitigate BPA-induced cell damage by activating the Nrf2 signaling pathway, suggesting that PC supplementation may alleviate BPA toxicity in TM3 cells.


Subject(s)
Apoptosis , Benzhydryl Compounds , NF-E2-Related Factor 2 , Phenols , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Benzhydryl Compounds/toxicity , Phenols/toxicity , Phenols/pharmacology , Apoptosis/drug effects , Signal Transduction/drug effects , Animals , Mice , Cell Line , Oxidative Stress/drug effects , Male , Leydig Cells/drug effects , Leydig Cells/metabolism
16.
Acta Pharmacol Sin ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160244

ABSTRACT

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 µM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-ß/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.

17.
Water Res ; 265: 122304, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39197391

ABSTRACT

The main pressing problems should be solved for heterogeneous catalysts in activation of peroxymonosulfate (PMS) are sluggish mass transfer kinetics and low intrinsic activity. Here, oxygen vacancies (Vo)-rich of Co3O4 nanosheets were anchored on the superficies of spirulina-based reduced graphene oxide-konjac glucomannan (KGM) aerogel (R-Co3O4-x/SRGA). The porous structure and superhydrophilicity conferred by KGM maximized the diffusion and transport of reactant. More interestingly, R-Co3O4-x/SRGA came true self-suspension rather than conventional self-floating without the aid of external force, maximizing space utilization and facilitating catalysts recovery. Anchored R-Co3O4-x nanosheets acted as "engines" to drive the reaction. Density functional theory (DFT) manifested Vo was capable of breaking the symmetry of the electronic structure of Co3O4. The formation of asymmetric active sites (Vo) was revealed to modulate the d-band center, enhanced affinity for PMS, and promoted evolution of high-valent cobalt-oxo (Co(IV)=O) species. R-Co3O4-x/SRGA achieved complete removal of sulfamethoxazole (SMX) within 12 min. Furthermore, R-Co3O4-x/SRGA demonstrated exceptional stability in the presence of various environmental interference factors and continuous flow device. This insightful work cleverly integrates the macroscopic design of structure, and the microscopic regulation of active sites is expected to open up new opportunities for the development of water treatment.


Subject(s)
Cobalt , Cobalt/chemistry , Peroxides/chemistry , Graphite/chemistry , Gels/chemistry , Catalysis
18.
Plant Physiol Biochem ; 215: 109020, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128405

ABSTRACT

Clubroot, a devastating soil borne disease affecting 30%∼50% of Brassicaceae crops worldwide, lacks effective control measures. In the present study, we explored the potential of melatonin (MT) and copper oxide nanoparticle (CuO-NPs) in mitigating clubroot severity in the Brassica rapa ssp. pekinensis. Following 18 h priming with MT, CuO-NPs, or both seeds were grown in controlled environment using synthetic potting mix. Inoculated with Plasmodiophora brassicae spores on 5th day, followed by a soil drench phyto-nano treatment with a week interval. Plants were assessed for various health and growth indices including disease, biometrics, photosynthesis, reactive oxygen species (ROS), antioxidant enzyme activity, hormones and genes expression at onset of secondary clubroot infection using established protocols. Statistical analysis employed ANOVA with Fisher's LSD for significance assessment (P < 0.05). Our results revealed that seed priming with both MT (50 µMol/L) and CuO-NPs (200 mg/L), followed by soil drenching significantly reduced clubroot incidence (38%) and disease index (57%), compared to control treatments. This synergistic effect was associated with enhanced plant growth (shoots: 48% and roots: 59%). Plants treated with both MT and CuO-NPs showed robust antioxidant defenses, significantly increased superoxide dismutase (SOD (25/29%)), catalase (CAT (83/55%)), and ascorbate peroxidase (APX (83/46%)) activity in both shoots/roots, respectively, compared to infected control. Notably, salicylic acid and jasmonic acid levels doubled in treated plants, while stress hormone abscisic acid (ABA) decreased by 80% in roots and 21% in shoots. Gene expression analysis corroborated these findings, showing that the combined treatment activated antioxidant defense genes (SOD, APX and CAT) by 1.9-7.2-fold and upregulated hormone signaling genes JAZ1 (7.8-fold), MYC2 (3.9-fold) and SABP2 (36-fold). Conversely, ABA biosynthesis genes (ABA1 and NCED1) were downregulated up to 7.2-fold, while plant resistance genes NPR1, PRB1 and PDF1.2 were dramatically increased by up to 6.3-fold compared to infected plants. Overall, our combined treatment approach significantly reduces clubroot severity in B. rapa via enhanced antioxidant defenses, improved ROS scavenging, coordinated hormonal regulation and increased pathogen response genes. This study offers promising strategy for developing effective control measures against clubroot in susceptible cruciferous crops.


Subject(s)
Brassica rapa , Copper , Melatonin , Plant Diseases , Plasmodiophorida , Melatonin/pharmacology , Brassica rapa/drug effects , Brassica rapa/parasitology , Brassica rapa/growth & development , Copper/pharmacology , Plant Diseases/parasitology , Plasmodiophorida/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/parasitology , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Metal Nanoparticles/chemistry , Photosynthesis/drug effects , Gene Expression Regulation, Plant/drug effects , Cyclopentanes , Oxylipins
19.
Adv Healthc Mater ; : e2401275, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979868

ABSTRACT

Compromised osteogenesis and angiogenesis is the character of stem cell senescence, which brought difficulties for bone defects repairing in senescent microenvironment. As the most abundant bone-related miRNA, miRNA-21-5p plays a crucial role in inducing osteogenic and angiogenic differentiation. However, highly efficient miR-21-5p delivery still confronts challenges including poor cellular uptake and easy degradation. Herein, TDN-miR-21-5p nanocomplex is constructed based on DNA tetrahedral (TDN) and has great potential in promoting osteogenesis and alleviating senescence of senescent bone marrow stem cells (O-BMSCs), simultaneously enhancing angiogenic capacity of senescent endothelial progenitor cells (O-EPCs). Of note, the activation of AKT and Erk signaling pathway may direct regulatory mechanism of TDN-miR-21-5p mediated osteogenesis and senescence of O-BMSCs. Also, TDN-miR-21-5p can indirectly mediate osteogenesis and senescence of O-BMSCs through pro-angiogenic growth factors secreted from O-EPCs. In addition, gelatin methacryloyl (GelMA) hydrogels are mixed with TDN and TDN-miR-21-5p to fabricate delivery scaffolds. TDN-miR-21-5p@GelMA scaffold exhibits greater bone repair with increased expression of osteogenic- and angiogenic-related markers in senescent critical-size cranial defects in vivo. Collectively, TDN-miR-21-5p can alleviate senescence and induce osteogenesis and angiogenesis in senescent microenvironment, which provides a novel candidate strategy for senescent bone repair and widen clinical application of TDNs-based gene therapy.

20.
J Agric Food Chem ; 72(30): 16726-16738, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39039032

ABSTRACT

Background: Dandouchi polypeptide (DDCP) is derived from Semen Sojae Praeparatum (Dandouchi in Chinese), a fermented product of Glycine max (L.) Merr. Semen Sojae Praeparatum is widely used in the food industry for its unique flavor and nutritional value, and DDCP, as its derivative, also shows potential health benefits in food applications. However, the specific active substances responsible for Semen Sojae Praeparatum and the underlying mechanisms involved have not been fully elucidated. Methods: DDCP was extracted from Semen Sojae Praeparatum using enzymes, and its antidepressant effects were tested in chronic unpredictable mild stress (CUMS)-induced mice. Immunohistochemistry, immunofluorescence, and western blotting were used to analyze neurogenesis and the nuclear factor κB (NF-κB) pathway. Moreover, an adeno-associated virus (AAV) shRNA was used to induce tripartite motif-containing 67 (TRIM67) deficiency to examine the function of TRIM67 in the neuroprotective effects of DDCP in depressive disorders. Results: DDCP reduced depressive behaviors in CUMS mice and the expression of proinflammatory markers in the hippocampus. DDCP promoted neurogenesis and modulated the TRIM67/NF-κB pathway, with TRIM67 deficiency impairing its antidepressant effect. Conclusions: This research revealed that DDCP has a protective effect on countering depression triggered by CUMS. Notably, TRIM67 plays a crucial role in mitigating depression through DDCP, positioning DDCP as a potential therapeutic option for treating depressive disorders.


Subject(s)
Depression , Hippocampus , NF-kappa B , Neurogenesis , Animals , Humans , Male , Mice , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Depression/metabolism , Depression/drug therapy , Depression/genetics , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Neurogenesis/drug effects , NF-kappa B/metabolism , NF-kappa B/genetics , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL