Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 112(4): 638-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22096116

ABSTRACT

In septic shock (SS), cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme-c (Lzm-S), released from leukocytes, contributed to systemic vasodilation in a canine model of SS. We then delineated the pathway by which this occurs in a canine carotid artery organ bath preparation (CAP). We showed that Lzm-S could intrinsically generate hydrogen peroxide (H(2)O(2)) and that H(2)O(2) subsequently reacted with endogenous catalase to form compound I, an oxidized form of catalase. In turn, compound I led to an increase in cyclic guanosine 3',5'-monophosphate to produce vasodilation. However, it was not clear from previous studies whether it is necessary for Lzm-S to bind to the vasculature to cause vasodilation or, alternatively, whether the generation of H(2)O(2) by Lzm-S in the surrounding medium is all that is required. We examined this question in the present study in which we used multiple preparations. In a partitioned CAP, we found that when we added Lzm-S to a partitioned space in which a semipermeable membrane prevented diffusion of Lzm-S to the carotid artery tissue, vasodilation still occurred because of diffusion of H(2)O(2). On the other hand, we found that Lzm-S could accumulate within the vascular smooth muscle layer (VSML) after 7 h of SS in a canine model. We also determined that when Lzm-S was located in close proximity to vascular smooth muscle cells, it could generate H(2)O(2) to produce lengthening in a human cell culture preparation. We conclude that there are two mechanisms by which Lzm-S can cause vasodilation in SS. In one instance, H(2)O(2) generated by Lzm-S in plasma diffuses to the VSML to cause vasodilation. In a second mechanism, Lzm-S directly binds to the VSML, where it generates H(2)O(2) to produce vasodilation.


Subject(s)
Muramidase/physiology , Myocytes, Smooth Muscle/physiology , Shock, Septic/physiopathology , Vasodilation , Animals , Cells, Cultured , Dogs , Gallic Acid/analogs & derivatives , Humans , In Vitro Techniques
2.
Crit Care Med ; 40(2): 560-72, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22020237

ABSTRACT

INTERVENTIONS: Vasopressor therapy is required in septic shock to maintain tissue perfusion in the face of hypotension. Unfortunately, there are significant side effects of current vasopressors, and newer agents need to be developed. We recently discovered that ethyl gallate, a nonflavonoid phenolic antioxidant found in food substances, could reverse low mean arterial pressure found in an experimental model of septic shock due to inhibition of hydrogen peroxide signaling. In the present study, we compared the hemodynamic and biochemical effects of ethyl gallate vs. those of the commonly used vasopressor, norepinephrine, in a bacteremic canine model of Pseudomonas aeruginosa sepsis in two protocols. MEASUREMENTS AND MAIN RESULTS: We performed these studies in anesthetized and mechanically ventilated dogs. In the early treatment protocol, we infused P. aeruginosa until mean arterial pressure first decreased to ∼60 mm Hg (about 2-3 hrs), after which we stopped the infusion and randomly administered ethyl gallate or norepinephrine in respective groups. In the late treatment protocol, we administered ethyl gallate or norepinephrine after a sustained ∼5-hr decrease in mean arterial pressure to 60 mm Hg and continued the infusion for the duration of the experiment. We followed parameters for over 10 hrs after the initiation of P. aeruginosa in both groups. We measured stroke work, urine output, serum creatinine, among other parameters, and used serum troponin T as an index of myocardial injury. We found that in both protocols, ethyl gallate and norepinephrine improved mean arterial pressure and stroke work to similar extents over the duration of the study. Particularly in the late treatment protocol, ethyl gallate resulted in a lower heart rate, a lower troponin T, and a greater urine output as compared with norepinephrine (p < .05). CONCLUSIONS: These results suggest that phenolic antioxidants, such as ethyl gallate, that inhibit hydrogen peroxide signaling, may represent an alternative class of vasopressors for use in septic shock.


Subject(s)
Gallic Acid/analogs & derivatives , Norepinephrine/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa , Shock, Cardiogenic/drug therapy , Shock, Septic/drug therapy , Analysis of Variance , Animals , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Administration Schedule , Gallic Acid/pharmacology , Pseudomonas Infections/mortality , Random Allocation , Risk Assessment , Shock, Cardiogenic/diagnosis , Shock, Cardiogenic/mortality , Shock, Septic/microbiology , Shock, Septic/mortality , Survival Rate , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL