Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Antimicrob Agents ; 63(2): 107061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103753

ABSTRACT

OBJECTIVES: Patients with Mycobacterium avium complex-pulmonary disease (MAC-PD) can exhibit contraindications in applying the recommended treatment regimens by the guidelines. Clofazimine (CFZ) is considered a promising drug for MAC-PD treatment and is frequently included in alternative regimens; however, its efficacy remains unclear. METHODS: MAC-PD patients, unsuitable for standard regimens, were enrolled continuously in a prospective study at Beijing Chest Hospital. The treatment response of the CFZ-containing regimen was monitored. RESULTS: Fifty patients were enrolled in the initial treatment, and 25 patients had a history of anti-TB treatment. Nodular bronchiectasis was observed in 34 patients, while 8 patients exhibited fibrocavitary changes. Additionally, eight patients displayed a combination of both patterns. In a multivariate analysis, MAC-PD patients with CFZ MIC < 0.25 mg/L were significantly associated with culture conversion [OR 8.415, 95% CI (1.983-35.705); P = 0.004]. Among patients who had previous TB treatment history, patients with CFZ MIC < 0.25 mg/L had a higher chance of acquiring culture conversion outcomes [(OR 7.737, 95% CI 1.032-57.989); P = 0.046]. In contrast, among patients with no previous TB treatment history, the RIF-containing regimen had a higher chance of acquiring culture conversion outcomes [(OR 11.038, 95%CI 1.008-120.888); P = 0.049]. CONCLUSION: MAC-PD patients unsuitable for standard regimens could benefit from a CFZ-containing regimen, especially for patients with previous TB treatment history and baseline CFZ MIC values lower than 0.25 mg/L.


Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Clofazimine/therapeutic use , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/drug therapy , Prospective Studies , Drug Therapy, Combination , Lung Diseases/drug therapy , Anti-Bacterial Agents/therapeutic use
2.
BMC Cancer ; 23(1): 1193, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053017

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) by routine hematoxylin and eosin staining (H&E-TILs) are a robust prognostic biomarker in various cancers. However, the role of H&E-TILs in esophageal squamous cell carcinoma (ESCC) treated with concurrent chemoradiotherapy (CCRT) has not been reported. The purpose of this study was to assess the prognostic value of H&E-TILs in ESCC treated with CCRT. METHODS: The clinical data of 160 patients with ESCC treated with CCRT in our center between Jan. 2014 and Dec. 2021 were collected and retrospectively reviewed, and propensity score matching (PSM) analyses were performed. The H&E-TILs sections before CCRT were reassessed by two experienced pathologists independently. The H&E-TILs sections were classified into a positive group (+, > 10%) and a negative group (-, ≤ 10%) using 10% as the cutoff. The effects of H&E-TILs on overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and locoregional recurrence-free survival (LRFS) were explored using the Kaplan‒Meier method, and the log-rank test was used to test the differences. Multivariable analysis was performed using the Cox proportion hazards model. RESULTS: The short-term response to CCRT and the OS (P < 0.001), DMFS (P = 0.001), and LRFS (P < 0.001) rates were significantly different between the H&E-TILs (+) and H&E-TILs (-) groups. Subgroup analysis showed that H&E-TILs(+) with CR + PR group had a longer survival than H&E-TILs(-) with CR + PR, H&E-TILs(+) with SD + PD and H&E-TILs(-) with SD + PD group, respectively(P < 0.001). Furthermore, based on TCGA data, patients in the high TILs group had a better prognosis than those in the low TILs group. Multivariate analyses indicated that H&E-TILs and the short-term response to CCRT were the only two independent factors affecting OS, PFS, DMFS, and LRFS simultaneously, and H&E-TILs expression was associated with an even better prognosis for those patients with CR + PR. CONCLUSIONS: H&E-TILs may be an effective and beneficial prognostic biomarker for ESCC patients treated with CCRT. Patients with H&E-TILs (+) with PR + CR would achieve excellent survival. Further prospective studies are required to validate the conclusions.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Prognosis , Eosine Yellowish-(YS) , Hematoxylin , Lymphocytes, Tumor-Infiltrating/pathology , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Retrospective Studies , Chemoradiotherapy/methods , Biomarkers
3.
J Immunol Res ; 2023: 4275998, 2023.
Article in English | MEDLINE | ID: mdl-37228442

ABSTRACT

Background: Systemic inflammation may be involved in the entire cancer process as a promoter and is associated with antitumor immunity. The systemic immune-inflammation index (SII) has been shown to be a promising prognostic factor. However, the relationship between SII and tumor-infiltrating lymphocytes (TIL) have not been established in esophageal cancer (EC) patients receiving concurrent chemoradiotherapy (CCRT). Methods: Retrospective analysis of 160 patients with EC was performed, peripheral blood cell counts were collected, and TIL concentration was assessed in H&E-stained sections. Correlations of SII and clinical outcomes with TIL were analyzed. Cox proportional hazard model and Kaplan-Meier method were used to perform survival outcomes. Results: Compared with high SII, low SII had longer overall survival (OS) (P = 0.036, hazard ratio (HR) = 0.59) and progression-free survival (PFS) (P = 0.041, HR = 0.60). Low TIL showed worse OS (P < 0.001, HR = 2.42) and PFS (P < 0.001, HR = 3.05). In addition, research have shown that the distribution of SII, platelet-to-lymphocyte ratio, and neutrophil-to-lymphocyte ratio were negatively associated with the TIL state, while lymphocyte-to-monocyte ratio presented a positive correlation. Combination analysis observed that SIIlow + TILhigh had the best prognosis of all combinations, with a median OS and PFS of 36 and 22 months, respectively. The worst prognosis was identified as SIIhigh + TILlow, with a median OS and PFS of only 8 and 4 months. Conclusion: SII and TIL as independent predictors of clinical outcomes in EC receiving CCRT. Furthermore, the predictive power of the two combinations is much higher than a single variable.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Lymphocytes, Tumor-Infiltrating , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Retrospective Studies , Lymphocytes/pathology , Prognosis , Chemoradiotherapy , Inflammation , Neutrophils/pathology
4.
J Biochem Mol Toxicol ; 37(1): e23220, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36094782

ABSTRACT

We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1ß and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1ß and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.


Subject(s)
Hydrogen Sulfide , Kidney Diseases , Uranium , Rats , Animals , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-18/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Up-Regulation , Inflammasomes/metabolism , Kidney/metabolism , Caspase 1/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger
5.
Radiat Oncol ; 17(1): 127, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35850908

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs), investigated using routine hematoxylin and eosin (H&E)-stained section slides (H&E-sTILs), provide a robust prognostic biomarker in various types of solid cancer. The purpose of the present study was to investigate the prognostic significance of H&E-sTILs in patients with small cell lung cancer (SCLC). METHODS: The clinical data of patients with SCLC who had been treated in our cancer center between January 2013 and October 2019 were collected and retrospectively reviewed. The H&E-sTILs were re-assessed by two experienced pathologists independently. H&E-sTILs that affected the overall survival (OS), progression free survival (PFS) and brain-metastasis free survival (BMFS) rates were explored using the Kaplan-Meier method, and the log-rank test was used to assess the differences. Multivariate analysis was subsequently performed using the Cox proportion hazards model. RESULTS: A total of 159 patients with SCLC who fulfilled the inclusion criteria were enrolled in the current study. The OS rates at 1, 2 and 3 years were 59.8, 28.6 and 19.8%, respectively, for the whole group. The 3-year OS, PFS and BMFS rates for the H&E-sTILs(+) and H&E-sTILs(-) groups were 25.1% cf. 5.1% (P = 0.030), 14.0% cf. 4.0% (P = 0.013), and 66.0% cf. 11.4% (P = 0.023), respectively. Multivariate analyses subsequently revealed that H&E-sTILs, clinical M stage, the cycles of chemotherapy and short-term response to thoracic radiotherapy were independent factors affecting OS, whereas H&E-sTILs, clinical N stage, clinical M stage and short-term response to chemotherapy were factors affecting PFS. The H&E-sTILs affected OS, PFS and BMFS simultaneously. CONCLUSIONS: The results of this retrospective study have shown that H&E-sTILs may be considered as a prognostic biomarker affecting the short-term response to treatment, and they are the one and only risk factor for BMFS. However, due to the limitations of the nature of the retrospective design and shortcomings in visually assessing the TILs based on the H&E-stained slides, further prospective studies are required to confirm these conclusions.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Biomarkers/metabolism , Humans , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis , Retrospective Studies , Small Cell Lung Carcinoma/pathology
6.
Environ Toxicol ; 37(4): 899-909, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35044038

ABSTRACT

Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.


Subject(s)
Endoplasmic Reticulum Stress , Uranium , Apoptosis , Kidney/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Uranium/pharmacology
7.
Free Radic Res ; 56(1): 40-52, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35075949

ABSTRACT

Pyroptosis is an exceptional mode of inflammation and programmed cell death involved in inflammasomes and Caspase-1 activation and inflammatory cytokines releasing. Our goal is to explore whether uranium (U)-intoxication could induce NRK-52E cells pyroptosis in vitro and its underlying molecular mechanism. Rat NRK-52E cells were intoxicated with U concentrations (400-500 µM) for 24 h. The results indicate that the cells showed characteristic features of pyroptosis, which were identified through augmented NLRP3 and cleaved Caspase-1 proteins expression, GSDMD mRNA level, mature interleukin IL-18 and IL-1ß contents, LDH leakage, and the number of double-positive cells. But, administration of glycine (an inhibitor of pyroptosis) effectively attenuated U-induced pyroptosis, LDH releasing and cytotoxicity. Pretreatment of CRID3 (an inhibitor of NLRP3 inflammasome) evidently abrogated NLRP3 and cleaved Caspase-1 proteins and GSDMD mRNA expression which all were up-regulated by U exposure. Simultaneously, CRID3 significantly reversed U-increased pyroptosis rate and active interleukin IL-18 and IL-1ß contents. NAC application (an ROS scavenger) effectively decreased U-increased ROS content and NLRP3 expression and restored U-induced pyroptosis. Taken together, our results suggest that U-treatment can trigger NRK-52E cells pyroptosis which is involvement of ROS/NLRP3/Caspase-1 pathway. Targeting ROS/NLRP3/Caspase-1-mediated pyroptosis may be a novel approach for attenuating U nephrotoxicity.


Subject(s)
Pyroptosis , Uranium , Animals , Caspase 1/genetics , Caspase 1/metabolism , Caspase 1/pharmacology , Inflammasomes/metabolism , Interleukin-18/pharmacology , Interleukin-1beta/metabolism , Kidney , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger , Rats , Reactive Oxygen Species/metabolism
8.
BMC Genomics ; 21(1): 183, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32102653

ABSTRACT

BACKGROUND: Whole-genome approaches are widely preferred for species delineation in prokaryotes. However, these methods require pairwise alignments and calculations at the whole-genome level and thus are computationally intensive. To address this problem, a strategy consisting of sieving (pre-selecting closely related genomes) followed by alignment and calculation has been proposed. RESULTS: Here, we initially test a published approach called "genome-wide tetranucleotide frequency correlation coefficient" (TETRA), which is specially tailored for sieving. Our results show that sieving by TETRA requires > 40% completeness for both genomes of a pair to yield > 95% sensitivity, indicating that TETRA is completeness-dependent. Accordingly, we develop a novel algorithm called "fragment tetranucleotide frequency correlation coefficient" (FRAGTE), which uses fragments rather than whole genomes for sieving. Our results show that FRAGTE achieves ~ 100% sensitivity and high specificity on simulated genomes, real genomes and metagenome-assembled genomes, demonstrating that FRAGTE is completeness-independent. Additionally, FRAGTE sieved a reduced number of total genomes for subsequent alignment and calculation to greatly improve computational efficiency for the process after sieving. Aside from this computational improvement, FRAGTE also reduces the computational cost for the sieving process. Consequently, FRAGTE extremely improves run efficiency for both the processes of sieving and after sieving (subsequent alignment and calculation) to together accelerate genome-wide species delineation. CONCLUSIONS: FRAGTE is a completeness-independent algorithm for sieving. Due to its high sensitivity, high specificity, highly reduced number of sieved genomes and highly improved runtime, FRAGTE will be helpful for whole-genome approaches to facilitate taxonomic studies in prokaryotes.


Subject(s)
Archaea/genetics , Bacteria/genetics , Computational Biology/methods , Whole Genome Sequencing/methods , Algorithms , Genome, Archaeal , Genome, Bacterial , Metagenomics , Species Specificity
9.
J Biochem Mol Toxicol ; 33(3): e22255, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30368988

ABSTRACT

As a gasotransmitter, hydrogen sulfide (H2 S) plays a crucial role in regulating the signaling pathway mediated by oxidative stress. The purpose of this study was to investigate the protective effects of H 2 S on uranium-induced rat hepatocyte cytotoxicity. Primary hepatocytes were isolated and cultured from Sprague Dawley rat liver tissues. After pretreating with sodium hydrosulfide (an H 2 S donor) for 1 hour (or GKT-136901 for 30 minutes), hepatocytes were treated by uranyl acetate for 24 hours. Cell viability, reactive oxygen species (ROS), malondialdehyde (MDA), NADPH oxidase 4 (Nox4), and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation were respectively determined. The effects of direct inhibition of Nox4 expression by GKT-136901 (a Nox4 inhibitor) on ROS and phospho-p38 MAPK levels were examined in uranium-treated hepatocytes. The results implicate that H 2 S can afford protection of rat hepatocytes against uranium-induced adverse effects through attenuating oxidative stress via prohibiting Nox4/ROS/p38 MAPK signaling.


Subject(s)
Hepatocytes/drug effects , Hydrogen Sulfide/pharmacology , Oxidative Stress , Signal Transduction , Uranium/toxicity , Animals , Cytotoxins/adverse effects , Cytotoxins/toxicity , Male , NADPH Oxidase 4/metabolism , Organometallic Compounds/adverse effects , Organometallic Compounds/toxicity , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Uranium/adverse effects , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Free Radic Res ; 52(9): 1020-1029, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30129387

ABSTRACT

Hydrogen sulfide (H2S) shows antioxidative, anti-inflammatory, antiapoptotic, and cytoprotective effects in kidneys. Recently, H2S has been reported to alleviate uranium-induced rat nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Here, the protective effect and molecular mechanism of H2S on uranium-induced apoptosis were examined in normal rat kidney proximal cells (NRK-52E) in vitro. The results indicate that NaHS (an H2S donor) administration in uranium-intoxicated kidney cells ameliorated uranium-induced reactive oxygen species generation, caspase-3-dependent apoptosis, and endoplasmic reticulum (ER) stress identified through several key markers including GRP78, C/EBP homologous protein (CHOP), and caspase-12. NaHS treatment in uranium-intoxicated kidney cells abolished the effects of uranium on Akt phosphorylation, GSK-3ß activation, increased Fyn nuclear expression, and concomitantly decreased Nrf2 nuclear expression. NaHS administration in uranium-treated kidney cells resorted uranium-decreased the expression of two key subunit PSMA6 and PSMB7 in 20S proteasome. But, DRB (an Nrf2 inhibitor) administration abrogated the effects of NaHS on PSMA6 and PSMB7 expression in uranium-contaminated kidney cells. Bortezomib (a proteasome inhibitor) treatment in NaHS pulsing uranium cotreated kidney cells reversed the effects of NaHS on not only PSMA6 and PSMB7 but also GRP78 and CHOP. Taken together, all data suggest that H2S can attenuate uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3ß/Fyn-Nrf2 signaling axis.


Subject(s)
Glycogen Synthase Kinase 3 beta/genetics , Inflammation/drug therapy , Kidney Diseases/drug therapy , NF-E2-Related Factor 2/genetics , Proto-Oncogene Proteins c-fyn/genetics , Animals , Apoptosis/drug effects , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation/drug effects , Humans , Hydrogen Sulfide/administration & dosage , Inflammation/chemically induced , Inflammation/physiopathology , Kidney/drug effects , Kidney/pathology , Kidney Diseases/chemically induced , Oxidative Stress/drug effects , Proteasome Endopeptidase Complex/drug effects , Proto-Oncogene Proteins c-akt/genetics , Rats , Reactive Oxygen Species/metabolism , Uranium/toxicity
11.
Pak J Pharm Sci ; 30(2(Suppl.)): 655-661, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28650336

ABSTRACT

The aim of the present study was to optimize the shaping technology of the traditional herbal formula Genhuang dispersible tablets, and also establish a method for content determination. The optimal formulation of Genhuang dispersible tablets was determined based on the results of single factor test and orthogonal design test. The disintegration was used as the main study indicator. The proportion of each adjuvant in the optimal formulation consisted of 40% MCC as bulking agent, 15% PVPP and 7% L-HPC as disintegrant, ethanol as adhesive, CSD as lubricant, preparing the dispersible tablets with wet granulation. The content of baicalin in Genhuang dispersible tablets was determined by RP-HPLC method, the C18 column (150×4.6 mm, 10µm) was used, the mobile phase was methanol-water-phosphoric acid (47: 53: 0.2) with the flow rate of 1mL/min, the detection wavelength was at 280 nm and the column temperature was 30oC. The prepared dispersible tablets could be totally disintegrated within three minutes and in accordance with the standard of the Chinese pharmacopoeia. In conclusion, the formulation was suitable for Genhuang dispersible tablets, and the determination method was simple, sensitive and accurate. Therefore, the Genhuang dispersible tablets can be used for industrial production and effectively controlled.


Subject(s)
Drugs, Chinese Herbal/chemistry , Flavonoids/analysis , Drug Compounding , Particle Size , Solubility , Tablets
12.
Environ Toxicol ; 32(2): 581-593, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26991019

ABSTRACT

As an endogenous gaseous mediator, H2 S exerts antioxidative, antiapoptotic, and cytoprotective effects in livers. This study was designed to investigate the protective role of H2 S against uranium-induced hepatotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2 S production was determined in livers. The levels of endogenous H2 S and H2 S-producing enzymes (CBS and CSE) were measured in liver homogenates from uranium -intoxicated rats. In rats injected intraperitoneally (i.p.) with uranyl acetate or NaHS (an H2 S donor) alone or in combination, we examined biochemical parameters to assess liver function, revealed hepatic histopathological alteration, investigated oxidative stress markers, and explored apoptotic signaling in liver homogenates. The results suggest that uranium-intoxication in rats decreased CBS and CSE protein expression, H2 S synthesis capacity, and endogenous H2 S generation. NaHS administration in uranium-intoxicated rats produced amelioration in liver biochemical indices and histopathological effects, decreased MDA content, and increased GSH level and antioxidative enzymes activities like SOD, CAT, GPx, and GST. NaHS administration in uranium-intoxicated rats attenuated uranium-activated phosphorylation state of JNK. NaHS treatment in uranium-intoxicated rats increased antiapoptotic Bcl-2 but decreased pro-apoptotic Bax, resulting in the rise of Bcl-2/Bax ratio. NaHS treatment in uranium-intoxicated rats reduced the apoptosis mediator caspase-3 and cytochrome c release and elevated ATP contents. Taken together, these data implicate that H2 S can afford protection to rat livers against uranium-induced adverse effects mediated by up-regulation of antioxidant and antiapoptotic signaling. The anti-apoptotic property of H2 S may be involved, at least in part, in inhibiting JNK signaling. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 581-593, 2017.


Subject(s)
Apoptosis/drug effects , Liver/drug effects , Organometallic Compounds/toxicity , Signal Transduction/drug effects , Sulfides/pharmacology , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Caspase 3/metabolism , Catalase/metabolism , Cytochromes c/metabolism , Glutathione Peroxidase/metabolism , Liver/metabolism , Liver/pathology , Male , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Up-Regulation/drug effects , bcl-2-Associated X Protein/metabolism
13.
Toxicol Res (Camb) ; 5(2): 660-673, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-30090379

ABSTRACT

The mechanism of uranium-induced kidney cell cytotoxicity is not fully understood. Nrf2 is a transcription factor which can regulate gene expression of cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) which are responsible for endogenous H2S formation. H2S is recognized as the gaseous mediator that exerts antioxidative and cytoprotective effects. Here, we assessed the in vitro effects of uranyl acetate on Nrf2 gene expression and endogenous H2S production in a stable rat kidney cell line (NRK-52E). The results imply that uranium treatment decreased cell viability and increased LDH release, indicating uranium-induced cytotoxicity. Uranium intoxication increased intracellular ROS and MDA contents, depleted GSH levels, and impaired SOD and CAT activities, which resulted in oxidative stress injuries. Uranium intoxication reduced CBS and CSE gene expression and endogenous H2S production. Uranium contamination decreased Nrf2 protein expression and nuclear translocation. RNA silencing of Nrf2 gene expression in kidney cells which had not been treated by uranium decreased CBS and CSE gene expression and endogenous H2S generation, which mirrored the effects of uranium exposure. In contrast, treating uranium-exposed kidney cells with Nrf2 activator (sulforaphane) preserved the protein levels of Nrf2, CBS and CSE, and endogenous H2S formation. Administration of NaHS (an H2S donor) to uranium-intoxicated kidney cells reduced cell damage and alleviated oxidative stress. These data imply that uranium-induced kidney cell cytotoxicity is mediated by decreased endogenous H2S production due to the down-regulation of CBS and CSE gene expression and reduced Nrf2 levels. Supplementary H2S generation and/or Nrf2 activation can mitigate the adverse effects of uranium on kidney cells.

14.
Article in English | MEDLINE | ID: mdl-28480359

ABSTRACT

BACKGROUND: Aster tataricus L. f. is used as a traditional Chinese drug to relieve cough and asthma symptoms and to eliminate phlegm. However, Aster tataricus L. f. possesses toxicity, and little systematic research has been conducted on its toxic effects in the laboratory. METHODS AND MATERIALS: The acute group was administered 75% alcohol extract of Aster tataricus L. f. in a single dose. A subchronic toxicity study was performed via daily oral administration of Aster tataricus L. f. at a dose of 0.34 g/kg body weight in SD rats. The rats were divided into six groups: a petroleum ether extract (PEA) group, an ethyl acetate extract (EEA) group, an n-butyl alcohol extract (NEA) group, a remaining lower aqueous phases (REA) group, a 75% alcohol extract (AEA) group and a control group. Quantitative measurements of cytokines were obtained by fluorescence with a laser scanner using a Cy3 equivalent dye. RESULTS: The LD50 of the 75% alcohol extract of Aster tataricus L. f. was 15.74 g/kg bw. In the subchronic toxicity study, no significant differences were observed among groups in relative organ weights, urine traits, liver antioxidase levels, or cytokine levels. However, significant sporadic differences were observed in body weight gains, haematology indices, biochemistry values, and histopathology features in PEA, EEA group. In addition, sporadic changes in other groups in measures such as WBC, MCHC, CK, ALP, AST, ALT, LDH, T-BIL, LDL-C, HDL-C, and TC were observed. CONCLUSION: The toxicity study showed that Aster tataricus L. f. can produce toxic effects, mainly on the liver; much less on the heart. The LD50 was 15.74 g/kg BW in mice, and the subchronic toxicity study, used a dosage of 0.34 g/kg/d.BW, showed that the toxic components of Aster tataricus L. f. were mainly concentrated in the petroleum ether fraction, followed by the ethyl acetate fraction, the n-butyl alcohol fraction, the lower aqueous phase and the 75% ethanol extracts. Abbreviations: PEA, petroleum ether extract of Aster tataricus L. f.; EEA, ethyl acetate extract of Aster tataricus L. f.; NEA: n-butyl alcohol extract of Aster tataricus L. f.; REA: lower aqueous phases of Aster tataricus L. f.; AEA, 75% alcohol extract of Aster tataricus L. f.; WBC, white blood cell; RBC, red blood cell, PLT, platelet; HCT, haematocrit; MCV, mean corpuscular volume; HGB, haemoglobin; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin concentration; CREA, creatinine; LDH, lactate dehydrogenase; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; T-BIL, total bilirubin; ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; TP, total protein; ALB, albumin; Glu, glucose; TC, total cholesterol; TG, triglycerides; CK, creatine kinase; GSH, Glutathione; MDA, malondialdehyde; T-SOD, total superoxide dismutase; TNF, tumour necrosis factor; IFN, interferon; MCP, monocyte chemotactic protein C.


Subject(s)
Aster Plant/toxicity , Plant Extracts/toxicity , 1-Butanol/toxicity , Acetates/toxicity , Alkanes/toxicity , Animals , Aster Plant/chemistry , Body Weight/drug effects , Cytokines/drug effects , Ethanol/toxicity , Female , Liver/drug effects , Male , Organ Size/drug effects , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
15.
Chem Biol Interact ; 242: 353-62, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26523793

ABSTRACT

As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 µmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway.


Subject(s)
Hydrogen Sulfide/metabolism , Kidney/drug effects , Kidney/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Uranium/toxicity , Animals , Inflammation/metabolism , Kidney/cytology , Male , Rats , Rats, Sprague-Dawley
16.
J Environ Radioact ; 129: 100-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412774

ABSTRACT

A field investigation was conducted for the vegetation composition and (226)Ra uptake by native plant species at a uranium mill tailings impoundment in South China. 80 species belonging to 67 genera in 32 families were recorded in the sampling sites. The Poaceae and Asteraceae were the dominant families colonizing the impoundment. The number of the plant species and vegetation community composition in the sampling sites seemed most closely related to the activities of (226)Ra and the pH value of the uranium tailings. The plant species in the sampling sites with relatively low activities of (226)Ra and relatively high pH value formed a relatively stable vegetation community. The plant species in the sampling sites with medium activities of (226)Ra and medium pH value formed the transitional vegetation community. The plant species in the sampling sites with relatively high activities of (226)Ra and relatively low pH value formed a simple unstable vegetation community that was similar to that on the unused grassland. The activities of (226)Ra and transfer factors (TFs) varied greatly with the plant species. The high activities of (226)Ra and TFs were found in the leaves of Pteris multifida (150.6 Bq/g of AW; 9.131), Pteridium aquilinum (122.2 Bq/g of AW; 7.409), and Dryopteris scottii (105.7 Bq/g of AW; 6.408). They satisfied the criteria for a hyperaccumulator for (226)Ra. They may be the candidates for phytoremediation of (226)Ra in the uranium mill tailings impoundment areas and the contaminated soils around.


Subject(s)
Plants/metabolism , Radium/metabolism , Biodegradation, Environmental , China , Mining , Plants/classification , Radioactive Waste , Uranium
17.
Bull Environ Contam Toxicol ; 86(6): 646-52, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21523506

ABSTRACT

The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 µg), thorium (103 µg) and lead (1,870 µg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 µg) and nickel (667 µg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 µg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 µg/g) and strontium (190 µg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method.


Subject(s)
Ferns/metabolism , Metals, Heavy/metabolism , Poaceae/metabolism , Soil Pollutants/metabolism , Barium/analysis , Barium/metabolism , Biodegradation, Environmental , China , Lead/analysis , Lead/metabolism , Metallurgy , Metals, Heavy/analysis , Nickel/analysis , Nickel/metabolism , Soil Pollutants/analysis , Strontium/analysis , Strontium/metabolism , Thorium/analysis , Thorium/metabolism , Uranium/analysis , Uranium/metabolism
18.
Bull Environ Contam Toxicol ; 83(4): 583-90, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19568683

ABSTRACT

The Huayuan River in Hunan Province in China is subject to ongoing mining activity with Mn extraction. In this study, the level and environmental significance of metals (including Mn, Cd, Pb, Cu, Zn, Ni and Fe) concentrations in the surface water and river sediments have been investigated along a 187 km reach of the Huayuan River. Using the X-ray fluorescence (XRF) analysis, we analyzed the characterization of metals in manganese sulphate waste residue (MSWR) deposited along the bank of Huayuan River. The speciation of metals in both sediment and MSWR was established using the BCR-three step sequential extraction procedure. In the water samples, the average concentrations of Mn, Cd and Pb exceeded the acceptable concentrations for drinking water in the WHO Guidelines for drinking water quality, Vol. 1, Recommendations, Geneva (2004) and Chinese (GB 5749-2006) guidelines, respectively. The average concentrations of Mn, Cd, Pb and Zn in the river sediments were found to be considerably higher than the corresponding world average shale values. The percentages of Cd (31.4%), Mn (31.1%), Zn (12.8%) and Pb (8.1%) associated with exchangeable and weak acid fraction in the sediments were higher than other metals. Mn (5.81%), Zn (0.208%), Pb (0.0292%) and Cd (0.0113%) were identified in MSWR by XRF analysis. The percentages of Mn, Cd, Zn and Pb associated with the exchangeable and weak acid soluble fraction in MSWR were 41.9%, 31.1%, 23.8% and 9.8%, respectively. The peak solute and sediment-bound metal concentrations were found at the sites of MSWR deposited along the bank of Huayuan River. The results suggested that MSWR deposited along the bank may have a closely relation with the metal pollution of Huayuan River. The results obtained may be useful to assess both short and long-term environmental impact of the MSWR deposited activities and support decisions for a future remediation of this river.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Water Pollutants/analysis , China , Geologic Sediments/chemistry , Rivers , Water Supply/standards
19.
Biochem Genet ; 47(1-2): 137-46, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19169861

ABSTRACT

Sox genes share a highly conserved DNA-binding motif, the HMG (high mobility group)-box domain, and have diverse roles in vertebrate embryonic development. A novel SRY-related cDNA (temporarily called Sox33) isolated from the Chinese alligator (Alligator sinensis) is 1,819 bp in length, with an open reading frame from 220 to 1113 bp, encoding a protein of 298 amino acids. Two putative polyadenylation signal sequences (AATAAA) are present upstream of the poly(A) tail in the 3' UTR (at 1255-1260 and 1774-1779). The putative protein contains an HMG-box domain most closely related to hSox12, mSox4, rtSox11, and mSox11 homologs, indicating that alligator Sox33 belongs to group C in the Sox gene family. Alligator adult and developing tissues were tested for Sox33 mRNA by independent Northern blots using a 336-bp probe (at 907-1243) between the HMG-box and the poly(A) site I and a 277-bp probe (at 1477-1754) between the two polyadenylation sites. Two transcripts (1.3 kb and 1.8 kb) in developing brain and one (1.8 kb) in adult brain were identified by the 336-bp probe; only one transcript (1.8 kb) in developing and adult brains was detected by the 277-bp probe. The results suggest that alligator Sox33 may use a different polyadenylation mechanism in the developing brain and play a role in the development and maintenance of the nervous system.


Subject(s)
Alligators and Crocodiles/genetics , SOX Transcription Factors/genetics , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling , Molecular Sequence Data , SOX Transcription Factors/chemistry , Sequence Alignment
20.
Sheng Li Xue Bao ; 59(3): 285-92, 2007 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-17579782

ABSTRACT

To explore the effect of sinomenine on the nitric oxide (NO)/neural nitric oxide synthase (nNOS) system in the cerebellum and spinal cord of morphine-dependent and morphine-withdrawal Kunming mice, mice were subjected to injection of morphine with an increasing dose for 5 d, and then were treated with sinomenine (40 mg/kg, i.p.) for another 5 d. Naloxone was used to develop acute withdrawal, and the withdrawal syndromes, including teeth chattering, twisting, straightening, sneezing and ptosis, were investigated. nNOS mRNA expressions in the cerebellum and spinal cord were determined by semi-quantitative RT-PCR. nNOS activity and NO level were determined by the chemistry-colorimetry and nitrate reductase-reduction, respectively. The results obtained were as follows: (1) Sinomenine restored the decrease in body weight and alleviated the signs of morphine-withdrawal in mice. (2) Sinomenine also reduced the increases in nNOS mRNA expression and nNOS activity resulting from morphine-dependence, and simultaneously attenuated the high level of NO in both tissues following morphine-withdrawal. (3) Administration of sinomenine alone did not develop physical dependence in mice. The results obtained indicate that sinomenine may attenuate morphine addiction and significantly alleviate morphine-withdrawal symptoms, and the mechanism may be associated with the effect of sinomenine on the NO/nNOS system in the cerebellum and spinal cord.


Subject(s)
Cerebellum/drug effects , Morphinans/pharmacology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/analysis , Spinal Cord/drug effects , Substance Withdrawal Syndrome/drug therapy , Animals , Body Weight/drug effects , Cerebellum/metabolism , Male , Mice , Morphinans/therapeutic use , Nitric Oxide Synthase Type I/genetics , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Substance Withdrawal Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL