Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
Chem Sci ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39129778

ABSTRACT

Single cell amperometry has proven to be a powerful and well-established method for characterizing single vesicular exocytotic events elicited at the level of excitable cells under various experimental conditions. Nevertheless, most of the reported characteristics are descriptive, being mostly concerned with the morphological characteristics of the recorded current spikes (maximum current intensities, released charge, rise and fall times, etc.) which are certainly important but do not provide sufficient kinetic information on exocytotic mechanisms due to lack of quantitative models. Here, continuing our previous efforts to provide rigorous models rationalizing the kinetic structures of frequently encountered spike types (spikes with unique exponential decay tails and kiss-and-run events), we describe a new theoretical approach enabling a quantitative kinetic modeling of all types of exocytotic events giving rise to current spikes exhibiting exponential decay tails. This model follows directly from the fact that the condensation of long intravesicular polyelectrolytic strands by high concentrations of monocationic neurotransmitter molecules leads to a matrix structure involving two compartments in constant kinetic exchanges during release. This kinetic model has been validated theoretically (direct and inverse problems) and its experimental interest established by the analysis of the amperometric spikes relative to chromaffin and PC12 cells previously published by some of us.

2.
Chem Sci ; 15(31): 12264-12269, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118606

ABSTRACT

Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but in situ probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO2(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details. It is interesting to find that the interfacial water exhibits an unexpected double-row pattern that has never been observed. This finding is confirmed by performing a large scale simulation of a stepped interface model enabled by machine learning accelerated molecular dynamics (MLMD) with ab initio accuracy. Furthermore, we show that this pattern is induced by the steps present on the surface, which can propagate across the terraces through interfacial hydrogen bonds. Our work demonstrates that by combining EC-STM and MLMD we can obtain new atomic details of interfacial structures that are valuable to understand the activity of oxides under realistic conditions.

3.
Shanghai Kou Qiang Yi Xue ; 33(3): 306-311, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39104349

ABSTRACT

PURPOSE: To compare the mucosal morphological difference in distal-extension area of mandibular dentition defect taken by intra-oral digital scanning and selective pressure impression techniques. METHODS: Seventeen patients with Kennedy Class I and Class II dentition defect in lower jaw were included, including twenty-two distal-extensions. Intraoral digital scanning and functional impression technique were taken in each patients, respectively. Laboratory cast scanner was used to scan the plaster casts made from the selective pressure impression to obtain the three-dimensional data. All the data were stored in STL format. The 3D data collecting from intra-oral digital scanning and selective pressure impression from the same patient were compared by Geomagic Control 2014 software. Root mean square of 2.5mm diameter area was calculated in 5,10,15 mm from terminal tooth. Pearson's correlation test was used to analyze the correlation of the distance and morphological difference with SPSS 20.0 software package. RESULTS: Mean mucosal morphological difference of jaw distal-extension edentulous area taken by intra-oral digital scanning and selective pressure impression techniques was (0.37±0.12) mm. There was positive correlation between distance from terminal tooth and mucosal morphological difference(P<0.05). Morphological differences in 5, 10, 15 mm from terminal tooth were (0.14±0.11) mm, (0.22±0.13) mm and (0.39±0.16) mm, respectively. CONCLUSIONS: In this study, there was positive correlation between the length of distal-extension edentulous area and mucosal morphological difference, while the kind of ridge defect and mucosal thickness may also affect the morphological difference quantity.


Subject(s)
Dental Impression Technique , Mandible , Humans , Mandible/anatomy & histology , Imaging, Three-Dimensional/methods , Models, Dental , Mouth Mucosa/anatomy & histology
4.
Blood Press Monit ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39105269

ABSTRACT

The aim of this study was to evaluate the accuracy of the JAMR upper-arm blood pressure monitor B23 in the general population according to the AAMI/ESH/ISO Universal Standard (ISO 81060-2 : 2018/AMD 1 : 2020). The study recruited participants who met the criteria of the AAMI/ESH/ISO Universal Standard in terms of their number, sex, age, limb size, and blood pressure (BP) distribution. The study involved measuring BP, including both SBP and DBP, using both the test device and a standard mercury sphygmomanometer in sequential measurements. Of 90 participants, 85 qualified participants were analyzed. A total of 255 sets of comparison data (three sets for each subject) were obtained and analyzed. For the validation criterion 1, the mean ±â€…SD of the differences between the JAMR B23 and mercury sphygmomanometer BP readings was -0.24 ±â€…6.52/-2.67 ±â€…5.6 mmHg (SBP/DBP). For criterion 2, the SD of the averaged BP (SBP/DBP) differences between the JAMR B23 and reference BP (SBP/DBP) per participant was 5.61/5.13 mmHg (the requirement was ≤6.95/6.43 mmHg by calculation). The JAMR B23 passed all the requirements of the AAMI/ESH/ISO Universal Standard (ISO 81060-2 : 2018/AMD 1 : 2020) and can be recommended for clinical and self/home use in the general population.

5.
J Phys Chem Lett ; 15(32): 8233-8239, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39102567

ABSTRACT

The microscopic structure of the material's solid-liquid interface significantly influences its physicochemical properties. Peak force infrared microscopy (PFIR) is a powerful technique for analyzing these interfaces at the nanoscale, revealing crucial structure-activity relationships. PFIR is recognized for its explicit photothermal signal generation mechanism but tends to overlook other photoinduced forces, which can disturb the obtained infrared spectra, thereby reducing spectral signal-to-noise ratio (SNR) and sensitivity. We have developed a multiphysics-coupled theoretical model to assess the magnitudes of various photoinduced forces in PFIR experiments and have found that the magnitude of the photoacoustic force is comparable to that of the photothermal expansion force in a liquid environment. Our calculations show that through simple modulation of the pulse waveform it is possible to effectively suppress the photoacoustic interference, thereby improving the SNR and sensitivity of PFIR. This work aims to alert researchers to the potential for strong photoacoustic interference in liquid-phase PFIR measurements and enhance the performance of PFIR by clarifying the photoinduced forces entangled in the signals.

6.
Angew Chem Int Ed Engl ; : e202413246, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166346

ABSTRACT

Contact Electro-Catalysis (CEC) using commercial dielectric materials in contact-separation cycles with water triggers interfacial electron transfer, generating reactive oxygen species (ROS). However, the hydrophobicity of these materials limits reaction sites, and the generated ROS often combine to form hydrogen peroxide (H2O2), which does not decompose further, leading to suboptimal rates. Addressing H2O2 generation and activation is crucial for advancing CEC. Here, we synthesized a catalyst by loading polytetrafluoroethylene (PTFE) onto ZSM-5 (PZ), achieving uniform dispersion in water. Introducing an FeIII-initiated self-cycling Fenton system (SF-CEC), with synergistic O2 activation and FeIII-activated H2O2, enhanced ROS generation. This system enabled nearly 99% degradation of azo dyes within 10 minutes, a sixfold improvement over traditional CEC. It represents the fastest ultrasound-induced degradation rate of methyl orange dye to date. Without extra oxidants, it also achieved stable dissolution of precious metals in weakly acidic solutions at room temperature, with 80% gold dissolution within 2 hours-2.5 times faster than similar systems. This study corrects the perception of CEC under acidic conditions, offering new insights for dye degradation and precious metal recovery.

8.
Gastroenterology Res ; 17(3): 126-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38993550

ABSTRACT

Background: With the advancement of laparoscopic technology, the combination of laparoscopy, choledochoscopy, and holmium laser lithotripsy has emerged as an effective treatment modality for both choledocholithiasis and hepatolithiasis. This study aimed to assess the efficacy and safety of this approach. Methods: Retrospective analysis was conducted on the medical records of 76 patients diagnosed with choledocholithiasis and hepatolithiasis between April 2021 and March 2023. Patients were divided into two groups based on the treatment plan: the control group, which underwent traditional laparotomy and choledochoscopy lithotripsy (n = 38), and the experimental group, which underwent laparoscopy combined with choledochoscopy and holmium laser lithotripsy (n = 38). Comparative analysis was performed on various operation-related parameters, stone-free rate, complication rates, and changes in biochemical, liver function, inflammatory, stress response indicators, and pain scores between the two groups. Results: The experimental group demonstrated significantly shorter stone removal time, reduced intraoperative bleeding, and shorter hospital stay compared to the control group (P < 0.05). Moreover, the experimental group exhibited lower incidence of postoperative complications and lower pain scores at 2 weeks to 3 months post-operation (P < 0.05). Biochemical indicators including total bile acid (TBA), total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and glutamyl transpeptidase (GGT) were significantly lower in the observation group compared to the control group (P < 0.05). Additionally, stress and inflammation indicators were also lower in the experimental group (P < 0.05). Conclusions: The combination of laparoscopy, choledochoscopy, and holmium laser lithotripsy presents favorable therapeutic outcomes in the management of choledocholithiasis and hepatolithiasis, indicating its potential for widespread clinical application.

9.
J Colloid Interface Sci ; 674: 766-777, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955008

ABSTRACT

Plasmon-mediated chemical reactions (PMCR) have garnered growing interest as a promising concept for photocatalysis. However, in electrochemical systems at solid-liquid interfaces, the photo-induced charge transfer on the surface of metal-semiconductor heterostructures involves complex processes and mechanisms, which are still poorly understood. We explore the plasmon-mediated carrier transfer mechanism and the synergistic effect of light and electric fields on Ag-TiO2 heterostructures, through a combination of electrochemical surface-enhanced Raman spectroscopy and photoelectrochemical methods, with para-aminothiophenol (PATP) serving as a probe molecule. The results show that photocurrent responses are dependent on not only excitation wavelengths and applied potentials, but also the irreversibility of redox. The relationship between photocurrent responses and the chemical transformation between PATP and 4,4'-dimercaptoazobenzene is established, reflecting the photo-induced charge transfer of the heterostructures. The collaboration of spectroscopic and photoelectrochemical methods provide valuable insights into the chemical transformation and kinetic information of adsorbed molecules on the heterostructure during PMCR, offering opportunities for modulating of photocatalytic activities of hot carriers.

10.
Anal Chem ; 96(23): 9610-9620, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822784

ABSTRACT

The emerging field of nanoscale infrared (nano-IR) offers label-free molecular contrast, yet its imaging speed is limited by point-by-point traverse acquisition of a three-dimensional (3D) data cube. Here, we develop a spatial-spectral network (SS-Net), a miniaturized deep-learning model, together with compressive sampling to accelerate the nano-IR imaging. The compressive sampling is performed in both the spatial and spectral domains to accelerate the imaging process. The SS-Net is trained to learn the mapping from small nano-IR image patches to the corresponding spectra. With this elaborated mapping strategy, the training can be finished quickly within several minutes using the subsampled data, eliminating the need for a large-labeled dataset of common deep learning methods. We also designed an efficient loss function, which incorporates the image and spectral similarity to enhance the training. We first validate the SS-Net on an open stimulated Raman-scattering dataset; the results exhibit the potential of 10-fold imaging speed improvement with state-of-the-art performance. We then demonstrate the versatility of this approach on atomic force microscopy infrared (AFM-IR) microscopy with 7-fold imaging speed improvement, even on nanoscale Fourier transform infrared (nano-FTIR) microscopy with up to 261.6 folds faster imaging speed. We further showcase the generalization of this method on AFM-force volume-based multiparametric nanoimaging. This method establishes a paradigm for rapid nano-IR imaging, opening new possibilities for cutting-edge research in materials, photonics, and beyond.

11.
Anal Chem ; 96(23): 9399-9407, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38804597

ABSTRACT

Fast and efficient sample pretreatment is the prerequisite for realizing surface-enhanced Raman spectroscopy (SERS) detection of trace targets in complex matrices, which is still a big issue for the practical application of SERS. Recently, we have proposed a highly performed liquid-liquid extraction (LLE)-back extraction (BE) for weak acids/bases extraction in drinking water and beverage samples. However, the performance efficiency decreased drastically on facing matrices like food and biological blood. Based on the total interaction energies among target, interferent, and extractant molecules, solid-phase extraction (SPE) with a higher selectivity was introduced in advance of LLE-BE, which enabled the sensitive (µg L-1 level) and rapid (within 10 min) SERS detection of both koumine (a weak base) and celastrol (a weak acid) in different food and biological samples. Further, the high SERS sensitivity was determined unmanned by Vis-CAD (a machine learning algorithm), instead of the highly demanded expert recognition. The generality of SPE-LLE-BE for various weak acids/bases (2 < pKa < 12), accompanied by the high efficiency, easy operation, and low cost, offers SERS as a powerful on-site and efficient inspection tool in food safety and forensics.


Subject(s)
Solid Phase Extraction , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Liquid-Liquid Extraction , Humans , Pentacyclic Triterpenes , Food Analysis/methods , Metal Nanoparticles/chemistry
12.
Anal Chem ; 96(17): 6550-6557, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38642045

ABSTRACT

There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.

13.
Angew Chem Int Ed Engl ; 63(27): e202405379, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38639181

ABSTRACT

Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.

14.
J Am Chem Soc ; 146(22): 15320-15330, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38683738

ABSTRACT

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

15.
Chemphyschem ; 25(15): e202400330, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38676545

ABSTRACT

Copper is widely used in everyday life and industrial production because of its good electrical and thermal conductivity. To overcome copper oxidation and maintain its good physical properties, small organic molecules adsorbed on the surface of copper make a passivated layer to further avoid copper corrosion. In this work, we have investigated thioglycolic acid (TGA, another name is mercaptoacetic acid) adsorbed on copper surfaces by using density functional theory (DFT) calculations and a periodical slab model. We first get five stable adsorption structures, and the binding interaction between TGA and Cu(111) surfaces by using density of states (DOS), indicating that the most stable configuration adopts a triple-end binding model. Then, we analyze the vibrational Raman spectra of TGA adsorbed on the Cu(111) surface and make vibrational assignments according to the vibrational vectors. Finally, we explore the temperature effect of the thermodynamically Gibbs free energy of TGA on the Cu(111) surface and the antioxidant ability of the small organic molecular layer of copper oxidation on the copper surface. Our calculated results further provide evidences to interpret the stability of adsorption structures and antioxidant properties of copper.

16.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

17.
Angew Chem Int Ed Engl ; 63(20): e202403114, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38488787

ABSTRACT

The conversion of methane under ambient conditions has attracted significant attention. Although advancements have been made using active oxygen species from photo- and electro- chemical processes, challenges such as complex catalyst design, costly oxidants, and unwanted byproducts remain. This study exploits the concept of contact-electro-catalysis, initiating chemical reactions through charge exchange at a solid-liquid interface, to report a novel process for directly converting methane under ambient conditions. Utilizing the electrification of commercially available Fluorinated Ethylene Propylene (FEP) with water under ultrasound, we demonstrate how this interaction promote the activation of methane and oxygen molecules. Our results show that the yield of HCHO and CH3OH can reach 467.5 and 151.2 µmol ⋅ gcat -1, respectively. We utilized electron paramagnetic resonance (EPR) to confirm the evolution of hydroxyl radicals (⋅OH) and superoxide radicals (⋅OOH). Isotope mass spectrometry (MS) was employed to analyze the elemental origin of CH3OH, which can be further oxidized to HCHO. Additionally, we conducted density functional theory (DFT) simulations to assess the reaction energies of FEP with H2O, O2, and CH4 under these conditions. The implications of this methodology, with its potential applicability to a wider array of gas-phase catalytic reactions, underscore a significant advance in catalysis.

18.
Chem Soc Rev ; 53(7): 3579-3605, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38421335

ABSTRACT

Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.

19.
Anal Chem ; 96(10): 4086-4092, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412039

ABSTRACT

Denoising is a necessary step in image analysis to extract weak signals, especially those hardly identified by the naked eye. Unlike the data-driven deep-learning denoising algorithms relying on a clean image as the reference, Noise2Noise (N2N) was able to denoise the noise image, providing sufficiently noise images with the same subject but randomly distributed noise. Further, by introducing data augmentation to create a big data set and regularization to prevent model overfitting, zero-shot N2N-based denoising was proposed in which only a single noisy image was needed. Although various N2N-based denoising algorithms have been developed with high performance, their complicated black box operation prevented the lightweight. Therefore, to reveal the working function of the zero-shot N2N-based algorithm, we proposed a lightweight Peak2Peak algorithm (P2P) and qualitatively and quantitatively analyzed its denoising behavior on the 1D spectrum and 2D image. We found that the high-performance denoising originates from the trade-off balance between the loss function and regularization in the denoising module, where regularization is the switch of denoising. Meanwhile, the signal extraction is mainly from the self-supervised characteristic learning in the data augmentation module. Further, the lightweight P2P improved the denoising speed by at least ten times but with little performance loss, compared with that of the current N2N-based algorithms. In general, the visualization of P2P provides a reference for revealing the working function of zero-shot N2N-based algorithms, which would pave the way for the application of these algorithms toward real-time (in situ, in vivo, and operando) research improving both temporal and spatial resolutions. The P2P is open-source at https://github.com/3331822w/Peak2Peakand will be accessible online access at https://ramancloud.xmu.edu.cn/tutorial.

20.
Chem Commun (Camb) ; 60(8): 980-983, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165770

ABSTRACT

Charged microdroplets are favored in microfluidic control, biomedicine, chemistry and materials processing due to their unique physicochemical environment, including interface double layers, high electric fields, surface concentration enrichment, and more. Herein, we investigated the crystallization of charged sodium chloride microdroplets and achieved the formation of hollow single crystals in a single-step process lasting only a few seconds, without the use of templates. Additionally, we discussed the plausible crystal growth mechanism, which appears to be an unconventional outward-inward growth process.

SELECTION OF CITATIONS
SEARCH DETAIL