Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474570

ABSTRACT

Polybenzimidazoles (PBIs) are recognized for their remarkable thermal stability due to their unique molecular structure, which is characterized by aromaticity and rigidity. Despite their remarkable thermal attributes, their tensile properties limit their application. To improve the mechanical performance of PBIs, we made a vital modification to their molecular backbone to improve their structural flexibility. Non-π-conjugated components were introduced into PBIs by grafting meta-polyamide (MA) and para-polyamide (PA) onto PBI backbones to form the copolymers PBI-co-MA and PBI-co-PA. The results indicated that the cooperation between MA and PA significantly enhanced mechanical strain and overall toughness. Furthermore, the appropriate incorporation of aromatic polyamide components (20 mol% for MA and 15% for PA) improved thermal degradation temperatures by more than 30 °C. By investigating the copolymerization of PBIs with MA and PA, we unraveled the intricate relationships between composition, molecular structure, and material performance. These findings advance copolymer design strategies and deepen the understanding of polymer materials, offering tailored solutions that address thermal and mechanical demands across applications.

2.
Polymers (Basel) ; 16(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399899

ABSTRACT

The effects of water absorption on the electric resistivity and dielectric constant of polyimide (PI) and poly(ethylene terephthalate) (PET) were investigated, and the mechanism of deterioration in electrical insulation properties was discussed. The polyimides are poly(oxydianiline pyromellitimide) (PMDA-ODA) and poly(para-phenylene diamine biphenyltetracarboxydiimide) (BPDA-PDA). These polymer films were immersed in pure water for various immersion times at room temperature, and the water absorption ratio was evaluated. The electric resistance for these films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in a frequency range of 200 kHz to 2 MHz. The absorption ratios at equilibrium absorption for PMDA-ODA, BPDA-PDA, and PET were 2.7, 2.5, and 0.5%, respectively. The critical volume fraction of the percolation threshold of electric conductivity due to water absorption was 0.034 for both PMDA-ODA and BPDA-PDA. On the other hand, PET did not show a significant decrease in the resistivity. For both PIs and PET, the dielectric constant observed could be explained by a series model of the respective capacitances of pure water and polymer. Actually, the resistivity of samples cut from the edges of the film after water absorption was almost the same value as that in the dry state. These results suggest that the absorbed water molecules are not uniformly dispersed in the film but are localized at the edges of the film even after the absorption equilibrium has been reached.

3.
RSC Adv ; 12(19): 11885-11895, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35481076

ABSTRACT

Bio-based polymer materials having great potential due to the depletion of fossil-fuel resources have been applied as single-use and medicinal materials but their low thermomechanical resistance have limited wider applications. Here, ultrahigh thermoresistant bio-based terpolymers with a low dielectric constant, comprising polybenzimidazole and poly(benzoxazole-random-aramid), were prepared by a method involving stepwise polycondensation of three monomers, 3,4-diaminobenzoic acid for benzimidazoles, 3-amino-4-hydroxylbenzoic acid for benzoxazoles, and 4-aminobenzoic acid for aramids. For optimized monomer compositions, the obtained terpolymers exhibited dielectric constants lower than 3, and a 10% mass loss at approximately 760 °C which is a temperature higher than that for any other polymer material reported so far. The high thermal degradation temperatures of the prepared terpolymers were a result of the high interaction enthalpies of hydrogen bonding between imidazole rings in the polymer chains, which were obtained from density functional theory calculations using trimer models. Furthermore, the applicability of the prepared terpolymers as a wire-coating material for a simple motor insulation was demonstrated, indicating that it has significant potential to be used as a thermostable material with a low dielectric constant (k).

SELECTION OF CITATIONS
SEARCH DETAIL
...