Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Adv Sci (Weinh) ; : e2403934, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225387

ABSTRACT

The overactivated immune cells in the infectious lesion may lead to irreversible organ damages under severe infections. However, clinically used immunosuppressive anti-inflammatory drugs will usually disturb immune homeostasis and conversely increase the risk of infections. Regulating the balance between anti-inflammation and anti-infection is thus critical in treating certain infectious diseases. Herein, considering that hydrogen peroxide (H2O2), myeloperoxidase (MPO), and neutrophils are upregulated in the inflammatory microenvironment and closely related to the severity of appendectomy patients, an inflammatory-microenvironment-responsive nanomedicine is designed by using poly(lactic-co-glycolic) acid (PLGA) nanoparticles to load chlorine E6 (Ce6), a photosensitizer, and luminal (Lum), a chemiluminescent agent. The obtained Lum/Ce6@PLGA nanoparticles, being non-toxic within normal physiological environment, can generate cytotoxic single oxygen via bioluminescence resonance energy transfer (BRET) in the inflammatory microenvironment with upregulated H2O2 and MPO, simultaneously killing pathogens and excessive inflammatory immune cells in the lesion, without disturbing immune homeostasis. As evidenced in various clinically relevant bacterial infection models and virus-induced pneumonia, Lum/Ce6@PLGA nanoparticles appeared to be rather effective in controlling both infection and inflammation, resulting in significantly improved animal survival. Therefore, the BRET-based nanoparticles by simultaneously controlling infections and inflammation may be promising nano-therapeutics for treatment of severe infectious diseases.

2.
BMC Geriatr ; 24(1): 630, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048949

ABSTRACT

BACKGROUND: Mobility limitations (e.g., using wheelchair) have been closely linked to diminished functional independence and quality of life in older adults. The regulation of mobility is pertaining to multiple neurophysiologic and sociodemographic factors. We here aimed to characterize the relationships of these factors to the risk of restricted mobility in older adults. METHODS: In this longitudinal study, 668 older adults with intact mobility at baseline completed the baseline assessments of clinical characteristics, cognitive function, sleep quality, activities of daily living (ADL), walking performance, beat-to-beat blood pressure, and structural MRI of the brain. Then 506 of them (mean age = 70.7 ± 7.5 years) responded to the follow-up interview on the mobility limitation (as defined by if using wheelchair, cane, or walkers, or being disabled and lying on the bed) after 18 ± 3.5 months. Logistic regression analyses were performed to examine the relationships between the baseline characteristics and the follow-up mobility restriction. RESULTS: At baseline, compared to intact-mobility group (n = 475), restricted-mobility group (n = 31) were older, with lower score of ADL and the Montreal Cognitive Assessment (MoCA), greater score of Pittsburgh Sleep Quality Index (PSQI), poorer cardio- and cerebral vascular function, and slower walking speeds (ps < 0.05). The logistic regression analysis demonstrated that participants who were with history of falls, uncontrolled-hypertension, and/or greater Fazekas scale (odds ratios (ORs):1.3 ~ 13.9, 95% confidence intervals (CIs) = 1.1 ~ 328.2), walked slower, and/or with lower ADL score (ORs: 0.0026 ~ 0.9; 95%CI: 0.0001 ~ 0.99) at baseline, would have significantly greater risk of restricted mobility (p < 0.05; VIFs = 1.2 ~ 1.9). CONCLUSIONS: These findings provide novel profile of potential risk factors, including vascular characteristics, psycho-cognitive and motor performance, for the development of restricted mobility in near future in older adults, ultimately helping the design of appropriate clinical and rehabilitative programs for mobility in this population.


Subject(s)
Activities of Daily Living , Mobility Limitation , Humans , Aged , Male , Female , Longitudinal Studies , Risk Factors , Activities of Daily Living/psychology , Aged, 80 and over , Geriatric Assessment/methods
3.
Cell Death Discov ; 10(1): 345, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085218

ABSTRACT

Necrotizing enterocolitis (NEC) involves intestinal epithelial damage and inflammatory response and is associated with high morbidity and mortality in infants. To improve therapeutic prospects, elucidating underlying molecular mechanisms of intestinal epithelial damage during NEC is of the essence. Poly (ADP-ribose) polymerase 1 (PARP1)-dependent parthanatos is a programmed inflammatory cell death. In the present study, the presence of parthanatos-associated proteins PARP1 and poly (ADP-ribose) (PAR), along with high expression of DNA damage-associated biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and phosphorylation of histone H2AX (γH2AX), were discovered in the intestinal tissues of NEC infants. Additionally, the upregulated expression of PARP1 and PAR in NEC intestinal tissues correlated distinctly with clinical indices indicative of NEC incidence and severity. Furthermore, we demonstrated that inhibiting the expression of parthanatos-associated proteins, by either pharmacological blockage using 3-aminobenzamide (3-AB), an inhibitor of PARP1, or genetic knockout using Parp1-deficient mice, resulted in substantial improvements in both histopathological severity scores associated with intestinal injury and inflammatory reactions. Moreover, in an in vitro NEC model, reactive oxygen species (ROS)-induced DNA damage promoted the formation of PAR and nuclear translocation of apoptosis-inducing factor (AIF), thus activating PARP1-dependent parthanatos in Caco-2 cells and human intestinal organoids. Our work verifies a previously unexplored role for parthanatos in intestinal epithelial damage during NEC and suggests that inhibition of parthanatos may serve as a potential therapeutic strategy for intervention of NEC.

4.
Aquat Toxicol ; 273: 107022, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032423

ABSTRACT

Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.


Subject(s)
Estrogens , Gonads , MicroRNAs , Takifugu , Animals , Takifugu/genetics , Female , Male , Estrogens/toxicity , Gonads/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Estradiol , Feminization/chemically induced , Feminization/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , Sex Differentiation/drug effects , Sex Differentiation/genetics , Transcriptome/drug effects , Gene Expression Regulation/drug effects
5.
Genome Biol ; 25(1): 102, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641822

ABSTRACT

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , Chromatin , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
6.
Front Public Health ; 12: 1341266, 2024.
Article in English | MEDLINE | ID: mdl-38362223

ABSTRACT

Strong epidemiological evidence has shown that early life adversity (ELA) has a profound negative impact on health in adulthood, including an increased risk of cardiovascular disease, the leading cause of death worldwide. Here, we review cohort studies on the effects of ELA on cardiovascular outcomes and the possible underlying mechanisms. In addition, we summarize relevant studies in rodent models of ELA. This review reveals that the prevalence of ELA varies between regions, time periods, and sexes. ELA increases cardiovascular health risk behaviors, susceptibility to mental illnesses, and neuroendocrine and immune system dysfunction in humans. Rodent models of ELA have been developed and show similar cardiovascular outcomes to those in humans but cannot fully replicate all ELA subtypes. Therefore, combining cohort and rodent studies to further investigate the mechanisms underlying the association between ELA and cardiovascular diseases may be a feasible future research strategy.


Subject(s)
Adverse Childhood Experiences , Cardiovascular Diseases , Mental Disorders , Humans , Cardiovascular Diseases/epidemiology , Immune System , Sexual Behavior
7.
ACS Nano ; 18(4): 3814-3825, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38230632

ABSTRACT

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.


Subject(s)
Electrons , Peroxidases , Peroxidase , Horseradish Peroxidase , Catalysis
8.
Aging Cell ; 23(1): e13943, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37615223

ABSTRACT

The fluctuations in resting-state beat-to-beat blood pressure (BP) are physiologically complex, and the degree of such BP complexity is believed to reflect the multiscale regulation of this critical physiologic process. Hypertension (HTN), one common age-related condition, is associated with altered BP regulation and diminished system responsiveness to perturbations such as orthostatic change. We thus aimed to characterize the impact of HTN on resting-state BP complexity, as well as the relationship between BP complexity and both adaptive capacity and underlying vascular characteristics. We recruited 392 participants (age: 60-91 years), including 144 that were normotensive and 248 with HTN (140 controlled- and 108 uncontrolled-HTN). Participants completed a 10-min continuous finger BP recording during supine rest, then underwent measures of lying-to-standing BP change, arterial stiffness (i.e., brachial-ankle pulse wave velocity), and endothelial function (i.e., flow-mediated vasodilation). The complexity of supine beat-to-beat systolic (SBP) and diastolic (DBP) BP was quantified using multiscale entropy. Thirty participants with HTN (16 controlled-HTN and 14 uncontrolled-HTN) exhibited orthostatic hypotension. SBP and DBP complexity was greatest in normotensive participants, lower in those with controlled-HTN, and lowest in those in uncontrolled-HTN (p < 0.0005). Lower SBP and DBP complexity correlated with greater lying-to-standing decrease in SBP and DBP level (ß = -0.33 to -0.19, p < 0.01), greater arterial stiffness (ß = -0.35 to -0.18, p < 0.01), and worse endothelial function (ß = 0.17-0.22, p < 0.01), both across all participants and within the control- and uncontrolled-HTN groups. These results suggest that in older adults, BP complexity may capture the integrity of multiple interacting physiologic mechanisms that regulate BP and are important to cardiovascular health.


Subject(s)
Cardiovascular System , Hypertension , Humans , Aged , Middle Aged , Aged, 80 and over , Blood Pressure/physiology , Ankle Brachial Index , Pulse Wave Analysis
9.
Nat Commun ; 14(1): 8393, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110369

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.


Subject(s)
Acute Kidney Injury , Ferroptosis , Reperfusion Injury , Humans , Kidney , Autophagy , Ischemia
10.
Gene ; 882: 147641, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37460000

ABSTRACT

Estradiol-17ß (E2) and aromatase inhibitor (AI) exposure can change the phenotypic sex of fish gonads. To investigated whether alterations in DNA methylation is involved in this process, the level of genome-wide DNA methylation in Takifugu rubripes gonads was quantitatively analyzed during the E2-induced feminization and AI-induced masculinization processes in this study. The methylation levels of the total cytosine (C) in control-XX(C-XX), control-XY (C-XY), E2-treated-XY (E-XY) and AI-treated-XX (AI-XX) were 9.11%, 9.19%, 8.63% and 9.23%, respectively. In the C-XX vs C-XY comparison, 4,196 differentially methylated regions (DMRs) overlapped with the gene body of 2,497 genes and 608 DMRs overlapped with the promoter of 575 genes. In the E-XY vs C-XY comparison, 6,539 DMRs overlapped with the gene body of 3,416 genes and 856 DMRs overlapped with the promoter of 776 genes. In the AI-XX vs C-XX comparison, 2,843 DMRs overlapped with the gene body of 1,831 genes and 461 DMRs overlapped with the promoter of 421 genes. Gonadal genomic methylation mainly occurred at CG sites and the genes that overlapped with DMRs on CG context were most enriched in the signaling pathways related to gonad differentiation, such as the Wnt, TGF-ß, MAPK, CAM and GnRH pathways. The DNA methylation levels of steroid synthesis genes and estrogen receptor genes promoter or gene body were negative correlated with their expression. After bisulfite sequencing verification, the DNA methylation level of the amhr2 promoter in XY was increased after E2 treatment, which consistent with the data from the genome-wide DNA methylation sequencing. In C-XY group, the expression of amhr2 was significantly higher than that in E-XY (p < 0.05). Additionally, dnmt1, which is responsible for methylation maintenance, expressed at similar level in four groups (p > 0.05). dnmt3, tet2, and setd1b, which were responsible for methylation modification, expressed at significantly higher levels in E-XY compared to the C-XY (p < 0.05). Dnmt3 and tet2 were expressed at significantly higher levels in AI-XX than that in C-XX (p < 0.05). These results indicated that E2 and AI treatment lead to the aberrant genome-wide DNA methylation level and expression level of dnmt3, tet2, and setd1b in T. rubripes gonad.


Subject(s)
Aromatase Inhibitors , DNA Methylation , Animals , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/metabolism , Takifugu/genetics , Sex Differentiation/genetics , Gonads/metabolism
11.
Biosens Bioelectron ; 237: 115497, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37390642

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) sandwich biosensors have received tremendous attention in early diagnosis of bacterial infections. However, efficiently engineering nanoscale plasmonic hots pots (HS) towards ultrasensitive SERS detection still remains challenging. Herein, we propose a bioinspired synergistic HS engineering strategy to construct ultrasensitive SERS sandwich bacterial sensor (named USSB), by coupling bioinspired signal module and plasmonic enrichment module to synergistically boost the number and intensity of HS. The bioinspired signal module is based on dendritic mesoporous silica nanocarrier (DMSN) loaded with plasmonic nanoparticles and SERS tag, while magnetic Fe3O4 nanoparticles coated with Au shell are employed in plasmonic enrichment module. We demonstrate that DMSN effectively shrank nanogaps between plasmonic nanoparticles to improve HS intensity. Meanwhile, plasmonic enrichment module contributed to plenty of additional HS inside and outside individual "sandwich". Ascribing to the boosted number and intensity of HS, the constructed USSB sensor exhibits ultrahigh detection sensitivity (7 CFU/mL) and selectivity towards model pathogenic bacteria of Staphylococcus aureus. Remarkably, the USSB sensor enables fast and accurate bacterial detection in real blood samples of septic mice, achieving early diagnosis of bacterial sepsis. The proposed bioinspired synergistic HS engineering strategy opens up a new direction for constructing ultrasensitive SERS sandwich biosensors, and may promote their advancing applications in the early diagnosis and prognosis of devastating diseases.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Animals , Mice , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Spectrum Analysis, Raman/methods , Staphylococcus aureus , Bacteria , Silicon Dioxide , Gold/chemistry
12.
Front Neurol ; 14: 1167957, 2023.
Article in English | MEDLINE | ID: mdl-37188307

ABSTRACT

Objective: To explore the effect of 12 weeks of Tai Chi on neuromuscular responses and postural control in elderly patients with sarcopenia. Methods: One hundred and twenty-four elderly patients with sarcopenia from ZheJiang Hospital and surrounding communities were selected, however, 64 were later disqualified. Sixty elderly patients with sarcopenia were randomly assigned to the Tai Chi group (n = 30) and the control group (n = 30). Both groups received 45-min health education sessions once every 2 weeks for 12 weeks, and the Tai Chi group engaged in 40-min simplified eight-style Tai Chi exercise sessions 3 times per week for 12 weeks. Two assessors who had received professional training and were unaware of the intervention allocation assessed the subjects within 3 days prior to the intervention and within 3 days after completion of the intervention. They chose the unstable platform provided by the dynamic stability test module in ProKin 254 to evaluate the patient's postural control ability. Meanwhile, surface EMG was utilized to assess the neuromuscular response during this period. Results: After 12 weeks of intervention, the Tai Chi group showed a significant decrease in neuromuscular response times of the rectus femoris, semitendinosus, anterior tibialis, and gastrocnemius and overall stability index (OSI) compared to before the intervention (p < 0.05), while there was no significant difference in the control group for these indicators before and after intervention (p > 0.05). In addition, these indicators in the Tai Chi group were significantly lower than those in the control group (p < 0.05). The changes in neuromuscular response times of the rectus femoris, semitendinosus, anterior tibialis, and gastrocnemius were positively correlated with the changes in OSI (p < 0.05) in the Tai Chi group, but there were no significant correlations between changes in neuromuscular response times of the aforementioned muscles and changes in OSI in the control group (p < 0.05). Conclusion: Twelve-weeks of Tai Chi exercise can improve the neuromuscular response of the lower extremities in elderly patients with sarcopenia, shorten their neuromuscular response time when balance is endangered, enhance their dynamic posture control ability, and ultimately reduce the risk of falls.

13.
J Fish Biol ; 102(2): 380-394, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36371656

ABSTRACT

The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.


Subject(s)
Opsins , Takifugu , Animals , Rod Opsins , Retina , Epithelium
14.
Research (Wash D C) ; 2022: 9767643, 2022.
Article in English | MEDLINE | ID: mdl-36258843

ABSTRACT

Sepsis is a life-threatening organ dysfunction characterized by severe systemic inflammatory response to infection. Effective treatment of bacterial sepsis remains a paramount clinical challenge, due to its astonishingly rapid progression and the prevalence of bacterial drug resistance. Here, we present a decoy nanozyme-enabled intervention strategy for multitarget blockade of proinflammatory cascades to treat multi-drug-resistant (MDR) bacterial sepsis. The decoy nanozymes (named MCeC@MΦ) consist mesoporous silica nanoparticle cores loaded with CeO2 nanocatalyst and Ce6 photosensitizer and biomimetic shells of macrophage membrane. By acting as macrophage decoys, MCeC@MΦ allow targeted photodynamic eradication of MDR bacteria and realize simultaneous endotoxin/proinflammatory cytokine neutralization. Meanwhile, MCeC@MΦ possess intriguing superoxide dismutase and catalase-like activities as well as hydroxyl radical antioxidant capacity and enable catalytic scavenging of multiple reactive oxygen species (ROS). These unique capabilities make MCeC@MΦ to collaboratively address the issues of bacterial infection, endotoxin/proinflammatory cytokine secretion, and ROS burst, fully cutting off the path of proinflammatory cascades to reverse the progression of bacterial sepsis. In vivo experiments demonstrate that MCeC@MΦ considerably attenuate systemic hyperinflammation and rapidly rescue organ damage within 1 day to confer higher survival rates (>75%) to mice with progressive MDR Escherichia coli bacteremia. The proposed decoy nanozyme-enabled multitarget collaborative intervention strategy offers a powerful modality for bacterial sepsis management and opens up possibilities for the treatment of cytokine storm in the COVID-19 pandemic and immune-mediated inflammation diseases.

15.
Front Public Health ; 10: 939053, 2022.
Article in English | MEDLINE | ID: mdl-36003630

ABSTRACT

Introduction: As the first bibliometric analysis of COVID-19 and immune responses, this study will provide a comprehensive overview of the latest research advances. We attempt to summarize the scientific productivity and cooperation across countries and institutions using the bibliometric methodology. Meanwhile, using clustering analysis of keywords, we revealed the evolution of research hotspots and predicted future research focuses, thereby providing valuable information for the follow-up studies. Methods: We selected publications on COVID-19 and immune response using our pre-designed search strategy. Web of Science was applied to screen the eligible publications for subsequent bibliometric analyses. GraphPad Prism 8.0, VOSviewer, and CiteSpace were applied to analyze the research trends and compared the contributions of countries, authors, institutions, and journals to the global publications in this field. Results: We identified 2,200 publications on COVID-19 and immune response published between December 1, 2019, and April 25, 2022, with a total of 3,154 citations. The United States (611), China (353), and Germany (209) ranked the top three in terms of the number of publications, accounting for 53.3% of the total articles. Among the top 15 institutions publishing articles in this area, four were from France, four were from the United States, and three were from China. The journal Frontiers in Immunology published the most articles (178) related to COVID-19 and immune response. Alessandro Sette (31 publications) from the United States were the most productive and influential scholar in this field, whose publications with the most citation frequency (3,633). Furthermore, the development and evaluation of vaccines might become a hotspot in relevant scope. Conclusions: The United States makes the most indispensable contribution in this field in terms of publication numbers, total citations, and H-index. Although publications from China also take the lead regarding quality and quantity, their international cooperation and preclinical research need to be further strengthened. Regarding the citation frequency and the total number of published articles, the latest research progress might be tracked in the top-ranking journals in this field. By analyzing the chronological order of the appearance of retrieved keywords, we speculated that vaccine-related research might be the novel focus in this field.


Subject(s)
Biomedical Research , COVID-19 , Bibliometrics , Germany , Humans , Publications , United States
16.
BMC Pediatr ; 22(1): 452, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35897053

ABSTRACT

BACKGROUND: Pneumonia is a serious problem that threatens the health of newborns. This study aimed to investigate the clinical characteristics of hospitalized term and preterm infants with community-acquired viral pneumonia. METHODS: This was a retrospective analysis of cases of community-acquired viral pneumonia in the Neonatal Department. Nasopharyngeal aspirate (NPA) samples were collected for pathogen detection, and clinical data were collected. We analysed pathogenic species and clinical characteristics among these infants. RESULTS: RSV is the main virus in term infants, and parainfluenza virus (PIV) 3 is the main virus in preterm infants. Patients infected with PIV3 were more susceptible to coinfection with bacteria than those with respiratory syncytial virus (RSV) infection (p < 0.05). Preterm infants infected with PIV3 were more likely to be coinfected with bacteria than term infants (p < 0.05), mainly gram-negative bacteria (especially Klebsiella pneumonia). Term infants with bacterial infection were more prone to fever, cyanosis, moist rales, three concave signs, elevated C-reactive protein (CRP) levels, respiratory failure and the need for higher level of oxygen support and mechanical ventilation than those with simple viral infection (p < 0.05). The incidence of hyponatremia in neonatal community-acquired pneumonia (CAP) was high. CONCLUSIONS: RSV and PIV3 were the leading causes of neonatal viral CAP. PIV3 infection is the main cause of viral CAP in preterm infants, and these individuals are more likely to be coinfected with bacteria than term infants, mainly gram-negative bacteria. Term infants with CAP coinfected with bacteria were more likely to have greater disease severity than those with single viral infections.


Subject(s)
Community-Acquired Infections , Pneumonia, Viral , Respiratory Syncytial Virus Infections , Virus Diseases , Community-Acquired Infections/epidemiology , Humans , Infant , Infant, Newborn , Infant, Premature , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Retrospective Studies
17.
Biochem Pharmacol ; 203: 115165, 2022 09.
Article in English | MEDLINE | ID: mdl-35803318

ABSTRACT

Necrotizing enterocolitis (NEC), an acute intestinal inflammatory disease of premature infants, is one of the leading causes of death in neonates. Effective measures for clinical treatment are limited and there is a pressing need in searching for new therapeutic strategies. Jumonji domain-containing protein D3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase plays a proinflammatory role in sepsis and neuroinflammation. However, whether JMJD3 is involved in the pathogenesis of NEC has not been elucidated. Here we report that overexpressed JMJD3 was revealed in the intestine of NEC patients by bioinformatic analysis. Moreover, upregulated JMJD3 and suppressed H3K27me3 were detected in both NEC patients and neonatal mice subjected to experimental NEC. Importantly, administration of GSK-J4, a specific JMJD3 inhibitor, rescued neonatal mice from NEC-associated lethality by suppressing proinflammatory response with attenuated IL-6, TNF-α, and MCP-1 levels and ameliorating intestinal injury with reversed claudin-1, occludin, and E-cadherin expression. Remarkably, administration of GSK-J4 attenuated intestinal injury by inhibiting activation of intestinal necroptosis in NEC mice. Administration of GSK-J4 regulated intestinal inflammation via NF-κB and JAK2/STAT3 pathway. These results indicate that JMJD3 is involved in the development of NEC and inhibition of JMJD3 overexpression by mean of GSK-J4 could be a potential therapeutic approach in the prevention and treatment of NEC.


Subject(s)
Enterocolitis, Necrotizing , Sepsis , Animals , Enterocolitis, Necrotizing/drug therapy , Humans , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Mice , NF-kappa B
18.
J Inflamm Res ; 15: 3829-3845, 2022.
Article in English | MEDLINE | ID: mdl-35836719

ABSTRACT

Background: Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring protection against microbial infection. Methods: This study was carried out to examine whether trained immunity is inducible and exerts its protection against microbial sepsis in neonates. Results: Induction of trained immunity by Bacillus Calmette-Guerin (BCG) plus bacterial lipoprotein (BLP) protected neonatal mice against cecal slurry peritonitis-induced polymicrobial sepsis, and this protection is associated with elevated circulating inflammatory cytokines, increased neutrophil recruitment, and accelerated bacterial clearance. In vitro stimulation of neonatal murine macrophages with BCG+BLP augmented both inflammatory response and antimicrobial activity. Notably, BCG+BLP stimulation resulted in epigenetic remodeling characterized by histone modifications with enhanced H3K4me3, H3K27Ac, and suppressed H3K9me3 at the promoters of the targeted inflammatory and antimicrobial genes. Critically, BCG+BLP stimulation led to a shift in cellular metabolism with increased glycolysis, which is the prerequisite for subsequent BCG+BLP-triggered epigenetic reprogramming and augmented inflammatory response and antimicrobial capacity. Conclusion: These results illustrate that BCG+BLP induces trained immunity in neonates, thereby protecting against microbial infection by boosting both inflammatory and antimicrobial responses.

19.
Proc Natl Acad Sci U S A ; 119(19): e2121244119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35512102

ABSTRACT

Sepsis, septic shock, and their sequelae are the leading causes of death in intensive care units, with limited therapeutic options. Disease resistance and tolerance are two evolutionarily conserved yet distinct defense strategies that protect the host against microbial infection. Here, we report that taurolidine administered at 6 h before septic challenge led to strong protection against polymicrobial sepsis by promoting both host resistance and disease tolerance characterized by accelerated bacterial clearance, ameliorated organ damage, and diminished vascular and gut permeability. Notably, taurolidine administered at 6 h after septic challenge also rescued mice from sepsis-associated lethality by enhancing disease tolerance to tissue and organ injury. Importantly, this in vivo protection afforded by taurolidine depends on an intact autophagy pathway, as taurolidine protected wild-type mice but was unable to rescue autophagy-deficient mice from microbial sepsis. In vitro, taurolidine induced light chain 3-associated phagocytosis in innate phagocytes and autophagy in vascular endothelium and gut epithelium, resulting in augmented bactericidal activity and enhanced cellular tolerance to endotoxin-induced damage in these cells. These results illustrate that taurolidine-induced autophagy augments both host resistance and disease tolerance to bacterial infection, thereby conferring protection against microbial sepsis.


Subject(s)
Sepsis , Thiadiazines , Animals , Autophagy , Mice , Phagocytosis , Sepsis/drug therapy , Sepsis/metabolism , Taurine/analogs & derivatives , Thiadiazines/pharmacology
20.
J Healthc Eng ; 2022: 1322172, 2022.
Article in English | MEDLINE | ID: mdl-35463668

ABSTRACT

Bioinformatic analysis indicated that downregulated CXCL14 will occur in the intestinal tissue of patients with necrotizing enterocolitis (NEC). To reveal the relationship between CXCL14 and mucosal immune regulation, we designed and implemented the experiments to explore the potential function of CXCL14 in the pathogenesis of NEC. Firstly, this study confirmed that the expression of CXCL14 decreased in the intestinal tract of NEC children. Secondly, the experiments results showed that CXCL14 could ameliorate the inflammatory injury of intestinal tissue through the suppressive effect on the expression of TNF-α and INF-γ in vivo. Finally, we explained that activation of the TLR4 can reduce the expression level of CXCL14 in the intestinal tissue of mouse pups. Collectively, our study suggested that CXCL14 may negatively regulate the inflammatory response in intestinal tissue and play an essential role in NEC development and progression.


Subject(s)
Enterocolitis, Necrotizing , Animals , Anti-Inflammatory Agents , Chemokines, CXC/therapeutic use , Enterocolitis, Necrotizing/drug therapy , Enterocolitis, Necrotizing/etiology , Enterocolitis, Necrotizing/pathology , Humans , Incidence , Infant, Newborn , Mice , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL