Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(32): 41949-41959, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093717

ABSTRACT

Management of diabetic chronic wound exudate is a serious challenge in healthcare worldwide since it is related to the speed of diabetic wound healing. However, current foam dressings not only absorb fluid to generate swelling and compress the wound to hinder wound healing but also are very thick and less comfortable to use. Herein, a superabsorbent self-pumping ultrathin dressing is reported to accelerate diabetic wound healing by achieving superior exudate absorption and management in an ultrathin state. The self-pumping dressing is composed of a drainage layer loaded with anthocyanidin and a thermoplastic polyurethane absorbent layer embedded with superabsorbent particles. The dressing realizes the self-pumping process of unidirectional exudate draining to the absorption layer through the drainage layer without significant dressing swelling to compress the diabetic wound. The dressing is experimentally proven to unidirectionally drain excessive exudate with inflammatory factors and modulate the conversion of macrophages from M1 to M2 in diabetic wounds, thereby promoting the healing of diabetic skin ulcers faster than commercial foam dressings. Therefore, the dressing provides a new idea and novel method for accelerating diabetic skin ulcer healing.


Subject(s)
Anthocyanins , Bandages , Diabetes Mellitus, Experimental , Macrophages , Wound Healing , Wound Healing/drug effects , Animals , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice , Diabetes Mellitus, Experimental/therapy , Anthocyanins/chemistry , Anthocyanins/pharmacology , Rats , Male , RAW 264.7 Cells , Polyurethanes/chemistry
2.
Adv Healthc Mater ; 13(10): e2303460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37957786

ABSTRACT

Self-pumping dressings become one of the optimal solutions for the controlled management of chronic diabetic wound exudate and wound healing. However, present self-pumping dressings are not only prone to breakage of the loose hydrophobic layer but also have cumbersome and complicated preparation steps, which hinder the application of self-pumping dressings in diabetic wound treatment. Herein, a novel self-pumping structure of superabsorbent Janus dressing is designed to improve the strength of the hydrophobic layer and promote diabetic wound healing. The Janus dressing consists of a hydrophobic layer with a drainage agent (drainage layer) and a fluffy 3D nanofiber cotton (absorbent layer). Regardless of the thickness of the drainage layer, the drainage agent in the drainage layer provides the fluid to penetrate the drainage layer to the absorbent layer for unidirectional fluid draining. In design proof, the superabsorbent Janus dressing provides unidirectional drainage of inflammatory exudate and regulation of macrophage polarization, resulting in faster diabetic wound healing than single-layer dressings. Thus, the Janus dressing demonstrates important clinical implications to offer a novel design and preparation strategy for accelerating diabetic wound healing.


Subject(s)
Bandages , Diabetes Mellitus , Humans , Wound Healing , Exudates and Transudates , Hydrophobic and Hydrophilic Interactions
3.
ACS Appl Mater Interfaces ; 13(20): 24173-24182, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33988972

ABSTRACT

Adaptability could meet basic technological application requirements. Therefore, a hydrogel-based transducer with durable adhesion, ultrahigh toughness, and super resilience was highly demanded. Here, a skin-like hydrogel transducer was successfully prepared through introducing carboxymethyl chitosan and sodium caseinate into a polyacrylamide hydrogel system. In addition, the polyacrylamide-sodium casein-carboxymethyl chitosan (PAAM-SC-CC) hydrogel has strong mechanical properties and excellent mechanical flexibility, largely due to the adequate energy dissipation mechanism. Surprisingly, the PAAM-SC-CC hydrogel exhibited stable and reproducible adhesion to various solid substrates and the human skin. Due to abundant free ions driven from sodium caseinate, the PAAM-SC-CC hydrogel could maintain stable and sensitive ionic conductivity without adding additional fillers. Experiments have proved that it can be applied to the field of human motion monitoring with complex signals. Therefore, the PAAM-SC-CC hydrogel sensor could monitor human movement in different strain ranges, including throat movement and joint extension. Such a flexible hydrogel-based transducer with various properties is conceivable to broaden the application field of bioelectrodes, human machines, personalized medical health fields, etc.


Subject(s)
Hydrogels/chemistry , Movement/physiology , Transducers , Wearable Electronic Devices , Adhesives , Electric Conductivity , Humans , Materials Testing , Skin/chemistry , Tensile Strength
4.
Plant Cell Rep ; 36(8): 1297-1309, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28508121

ABSTRACT

KEY MESSAGE: A Salvia miltiorrhiza R2R3-MYB gene, SmMYB9b , has been cloned and characterized. Overexpression of SmMYB9b resulted in a significant improvement of tanshinones, the lipophilic active ingredients in danshen hairy roots. Plant R2R3-MYB transcription factors play important roles in various physiological and biochemical processes. Danshen (Salvia miltiorrhiza bunge) is a valuable medicinal herb with tanshinones and salvianolic acids as the principal bioactive ingredients. A number of putative R2R3-MYB transcription factors have been identified in the plant, but their function remains to be studied. Here, we report the cloning of SmMYB9b, an S20 R2R3-MYB member and its regulatory properties. SmMYB9b contains an open reading frame of 792 bp in length and encodes a 264-amino acid protein. Its transcripts were most abundant in blooming flowers (except for calyces) and increased with flower development. Exogenous abscisic acid strongly activated its transcription. Gibberellins and methyl jasmonate also showed a time-dependent activation effect on its transcription, but to a weaker degree. Overexpression of SmMYB9b in danshen hairy roots enhanced tanshinone concentration to 2.16 ± 0.39 mg/g DW, a 2.2-fold improvement over the control. In addition to increased tanshinone concentration, the hairy root growth and lateral hairy root formation were also suppressed. KEGG pathway enrichment analysis with de novo RNAseq data indicated that stress-response-related metabolic pathways, such as the terpenoid and plant hormone signal transduction pathways, were significantly enriched, implying possible implication of SmMYB9b in such processes. Quantitative RT-PCR analysis showed that the transcription of terpenoid biosynthetic genes SmDXS2, SmDXR, SmGGPPS, and SmKSL1 was significantly up-regulated in danshen hairy roots over expressing SmMYB9b. These data suggest that overexpression of SmMYB9b results in enhanced tanshinone concentration through stimulation of the MEP pathway. The present findings shed new light on elucidating the roles of R2R3-MYB in the biosynthesis of diterpenoids in S. miltiorrhiza.


Subject(s)
Abietanes/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Salvia miltiorrhiza/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plants, Genetically Modified/genetics , Reverse Transcriptase Polymerase Chain Reaction , Salvia miltiorrhiza/genetics , Transcription Factors/genetics
5.
Gene ; 523(2): 122-5, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23603018

ABSTRACT

An efficient DNA assembling strategy was developed here modified from Class-IIS endonuclease mediated DNA splicing by directed ligation (SDL). Benefited from the full-length PCR directly using ligation products as template, this strategy required less effort and less time to obtain the assembled full-length DNA. The advantages of this strategy made it a rapid and easy-to-perform gene splicing and multiple site-directed mutagenesis approach especially practicable when more fragments need to be assembled at the same time.


Subject(s)
Cloning, Molecular/methods , Polymerase Chain Reaction , Aspergillus niger/genetics , DNA, Complementary , Gene Order , Genome, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL