Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Nucleic Acids Res ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869066

ABSTRACT

Translational fidelity relies critically on correct aminoacyl-tRNA supply. The trans-editing factor AlaX predominantly hydrolyzes Ser-tRNAAla, functioning as a third sieve of alanyl-tRNA synthetase (AlaRS). Despite extensive studies in bacteria and archaea, the mechanism of trans-editing in mammals remains largely unknown. Here, we show that human AlaX (hAlaX), which is exclusively distributed in the cytoplasm, is an active trans-editing factor with strict Ser-specificity. In vitro, both hAlaX and yeast AlaX (ScAlaX) were capable of hydrolyzing nearly all Ser-mischarged cytoplasmic and mitochondrial tRNAs; and robustly edited cognate Ser-charged cytoplasmic and mitochondrial tRNASers. In vivo or cell-based studies revealed that loss of ScAlaX or hAlaX readily induced Ala- and Thr-to-Ser misincorporation. Overexpression of hAlaX impeded the decoding efficiency of consecutive Ser codons, implying its regulatory role in Ser codon decoding. Remarkably, yeast cells with ScAlaX deletion responded differently to translation inhibitor treatment, with a gain in geneticin resistance, but sensitivity to cycloheximide, both of which were rescued by editing-capable ScAlaX, alanyl- or threonyl-tRNA synthetase. Altogether, our results demonstrated the previously undescribed editing peculiarities of eukaryotic AlaXs, which provide multiple checkpoints to maintain the speed and fidelity of genetic decoding.

2.
Nucleic Acids Res ; 52(9): 5226-5240, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613394

ABSTRACT

RNA acetylation is a universal post-transcriptional modification that occurs in various RNAs. Transfer RNA (tRNA) acetylation is found at position 34 (ac4C34) in bacterial tRNAMet and position 12 (ac4C12) in eukaryotic tRNASer and tRNALeu. The biochemical mechanism, structural basis and functional significance of ac4C34 are well understood; however, despite being discovered in the 1960s and identification of Kre33/NAT10 and Tan1/THUMPD1 as modifying apparatuses, ac4C12 modification activity has never been reconstituted for nearly six decades. Here, we successfully reconstituted the ac4C12 modification activity of yeast Kre33 and Tan1. Biogenesis of ac4C12 is primarily dependent on a minimal set of elements, including a canonical acceptor stem, the presence of the 11CCG13 motif and correct D-arm orientation, indicating a molecular ruler mechanism. A single A13G mutation conferred ac4C12 modification to multiple non-substrate tRNAs. Moreover, we were able to introduce ac4C modifications into small RNAs. ac4C12 modification contributed little to tRNA melting temperature and aminoacylation in vitro and in vivo. Collectively, our results realize in vitro activity reconstitution, delineate tRNA substrate selection mechanism for ac4C12 biogenesis and develop a valuable system for preparing acetylated tRNAs as well as non-tRNA RNA species, which will advance the functional interpretation of the acetylation in RNA structures and functions.


Subject(s)
RNA, Transfer , RNA-Binding Proteins , Saccharomyces cerevisiae Proteins , Acetylation , Mutation , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , RNA-Binding Proteins/metabolism
3.
Trends Endocrinol Metab ; 35(4): 285-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307811

ABSTRACT

Mitochondria play multiple critical roles in cellular activity. In particular, mitochondrial translation is pivotal in the regulation of mitochondrial and cellular homeostasis. In this forum article, we discuss human mitochondrial tRNA metabolism and highlight its tight connection with various mitochondrial diseases caused by mutations in aminoacyl-tRNA synthetases, tRNAs, and tRNA-modifying enzymes.


Subject(s)
Amino Acyl-tRNA Synthetases , Mitochondria , Humans , Mitochondria/genetics , Mitochondria/metabolism , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
4.
Nucleic Acids Res ; 52(6): 3213-3233, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38227555

ABSTRACT

N 6-Threonylcarbamoyladenosine at A37 (t6A37) of ANN-decoding transfer RNAs (tRNAs) is a universal modification whose functions have been well documented in bacteria and lower eukaryotes; however, its role in organellar translation is not completely understood. In this study, we deleted the mitochondrial t6A37-modifying enzyme OSGEPL1 in HEK293T cells. OSGEPL1 is dispensable for cell viability. t6A37 hypomodification selectively stimulated N1-methyladenosine at A9 (m1A9) and N2-methylguanosine at G10 (m2G10) modifications and caused a substantial reduction in the aminoacylation of mitochondrial tRNAThr and tRNALys, resulting in impaired translation efficiency. Multiple types of amino acid misincorporation due to the misreading of near-cognate codons by t6A37-unmodified tRNAs were detected, indicating a triggered translational infidelity. Accordingly, the alterations in mitochondrial structure, function, and the activated mitochondrial unfolded protein response were observed. Mitochondrial function was efficiently restored by wild-type, but not by tRNA-binding-defective OSGEPL1. Lastly, in Osgepl1 deletion mice, disruption to mitochondrial translation was evident but resulted in no observable deficiency under physiological conditions in heart, which displays the highest Osgepl1 expression. Taken together, our data delineate the multifaceted roles of mitochondrial t6A37 modification in translation efficiency and quality control in mitochondria.


Subject(s)
Genes, Mitochondrial , Mitochondria , RNA, Transfer , Animals , Humans , Mice , HEK293 Cells , Mitochondria/genetics , Mitochondria/metabolism , Protein Biosynthesis , RNA, Transfer/metabolism
5.
PeerJ ; 11: e16238, 2023.
Article in English | MEDLINE | ID: mdl-38077416

ABSTRACT

Background: Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic importance due to being a polyphagous and world-distributed agricultural pest. However, agricultural practices involving chemical pesticides have caused resistance, resurgence, and residue problems, highlighting the need for new, environmentally friendly methods to control the spread of S. litura. Aim: This study aimed to investigate the gut poisoning of grayanotoxin I, an active compound found in Pieris japonica, on S. litura, and to explore the underlying mechanisms of these effects. Methods: S. litura was cultivated in a laboratory setting, and their survival rate, growth and development, and pupation time were recorded after grayanotoxin I treatment. RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the functions of these DEGs. ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase (HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H & E) staining was used to detect the development of the fat body. Results: Grayanotoxin I treatment significantly suppressed the survival rate, growth and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285 DEGs were enriched in the categories of cuticle development, larvae longevity, fat digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA, lipase, and HOAD in the hemolymph of S. litura. Conclusion: The results of this study demonstrated that grayanotoxin I inhibited the growth and development of S. litura. The mechanisms might, at least partly, be related to the interference of lipid synthesis, lipolysis, and fat body development. These findings provide valuable insights into a new, environmentally-friendly plant-derived insecticide, grayanotoxin I, to control the spread of S. litura.


Subject(s)
Gene Expression Profiling , Lipid Metabolism , Animals , Spodoptera , Lipid Metabolism/genetics , Gene Expression Profiling/methods , Lipase/pharmacology
6.
Cell Metab ; 35(12): 2216-2230.e8, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37979583

ABSTRACT

Mammalian target of rapamycin complex 1 (mTORC1) monitors cellular amino acid changes for function, but the molecular mediators of this process remain to be fully defined. Here, we report that depletion of cellular amino acids, either alone or in combination, leads to the ubiquitination of mTOR, which inhibits mTORC1 kinase activity by preventing substrate recruitment. Mechanistically, amino acid depletion causes accumulation of uncharged tRNAs, thereby stimulating GCN2 to phosphorylate FBXO22, which in turn accrues in the cytoplasm and ubiquitinates mTOR at Lys2066 in a K27-linked manner. Accordingly, mutation of mTOR Lys2066 abolished mTOR ubiquitination in response to amino acid depletion, rendering mTOR insensitive to amino acid starvation both in vitro and in vivo. Collectively, these data reveal a novel mechanism of amino acid sensing by mTORC1 via a previously unknown GCN2-FBXO22-mTOR pathway that is uniquely controlled by uncharged tRNAs.


Subject(s)
Protein Serine-Threonine Kinases , TOR Serine-Threonine Kinases , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Amino Acids/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
7.
Int J Biol Macromol ; 253(Pt 5): 127121, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37778588

ABSTRACT

The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.


Subject(s)
Alanine , Amino Acyl-tRNA Synthetases , Animals , Mice , Alanine/genetics , RNA, Transfer, Thr , RNA, Transfer, Cys , Amino Acyl-tRNA Synthetases/chemistry , Amino Acids/chemistry , RNA, Transfer/genetics , Mammals/genetics
8.
Proc Natl Acad Sci U S A ; 120(37): e2309714120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669377

ABSTRACT

Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.


Subject(s)
Amino Acyl-tRNA Synthetases , Cardiomyopathies , Heart Diseases , Animals , Mice , Reactive Oxygen Species , Cell Cycle Checkpoints , Oxidative Stress , Mammals
9.
Sci Bull (Beijing) ; 68(18): 2094-2105, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37573249

ABSTRACT

Methyltransferase-like 8 (METTL8) encodes a mitochondria-localized METTL8-Iso1 and a nucleolus-distributed METTL8-Iso4 isoform, which differ only in their N-terminal extension (N-extension), by mRNA alternative splicing. METTL8-Iso1 generates 3-methylcytidine at position 32 (m3C32) of mitochondrial tRNAThr and tRNASer(UCN). Whether METTL8-Iso4 is an active m3C32 methyltransferase and the role of the N-extension in mitochondrial tRNA m3C32 formation remain unclear. Here, we revealed that METTL8-Iso4 was inactive in m3C32 generation due to the lack of N-extension, which contains several absolutely conserved modification-critical residues; the counterparts were likewise essential in cytoplasmic m3C32 biogenesis by methyltransferase-like 2A (METTL2A) or budding yeasts tRNA N3-methylcytidine methyltransferase (Trm140), in vitro and in vivo. Cross-compartment/species tRNA modification assays unexpectedly found that METTL8-Iso1 efficiently introduced m3C32 to several cytoplasmic or even bacterial tRNAs in vitro. m3C32 did not influence tRNAThrN6-threonylcarbamoyladenosine (t6A) modification or aminoacylation. In addition to its interaction with mitochondrial seryl-tRNA synthetase (SARS2), we further discovered an interaction between mitochondrial threonyl-tRNA synthetase (TARS2) and METTL8-Iso1. METTL8-Iso1 substantially stimulated the aminoacylation activities of SARS2 and TARS2 in vitro, suggesting a functional connection between mitochondrial tRNA modification and charging. Altogether, our results deepen the mechanistic insights into mitochondrial m3C32 biogenesis and provide a valuable route to prepare cytoplasmic/bacterial tRNAs with only a m3C32 moiety, aiding in future efforts to investigate its effects on tRNA structure and function.


Subject(s)
COVID-19 , Humans , RNA, Mitochondrial/genetics , RNA, Transfer/genetics , Protein Isoforms , Methyltransferases/genetics
10.
Environ Sci Pollut Res Int ; 30(42): 95875-95891, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37561306

ABSTRACT

The wastewater discharged from crude oil storage tanks (WCOST) contains high concentrations of salt and metal iron ions, and high chemical oxygen demand (COD). It belongs to "3-high" wastewater, which is difficult for purification. In this study, WCOST treatments were comparatively investigated via an advanced pretreatment and the traditional coagulation-microfiltration (CMF) processes. After WCOST was purified through the conventional CMF process, fouling occurred in the microfiltration (MF) membrane, which is rather harmful to the following reverse osmosis (RO) membrane unit, and the effluent featured high COD and UV254 values. The analysis confirmed that the MF fouling was due to the oxidation of ferrous ions, and the high COD and UV254 values were mainly attributable to the organic compounds with small molecular sizes, including aromatic-like and fulvic-like compounds. After the pretreatment of the advanced process consisting of aeration, manganese sand filtration, and activated carbon adsorption in combination with CMF process, the removal efficiencies of organic matter and total iron ions reached 97.3% and 99.8%, respectively. All the water indexes of the effluent, after treatment by the advanced multi-unit process, meet well the corresponding standard. The advanced pretreatment process reported herein displayed a great potential for alleviating the MF membrane fouling and enhanced the lifetime of the RO membrane system in the 3-high WCOST treatment.


Subject(s)
Petroleum , Water Purification , Wastewater , Waste Disposal, Fluid , Petroleum/analysis , Filtration , Ions/analysis , Iron/analysis , Osmosis , Membranes, Artificial
11.
J Mol Biol ; 435(14): 168142, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37356907

ABSTRACT

Although nascent RNA profiling data are widely used in transcriptional regulation studies, the development and standardization of data processing pipeline lags far behind RNA-seq. We are filling this gap by establishing the nASAP web server (https://grobase.top/nasap/) to provide practical quality evaluation and comprehensive analysis of nascent RNA datasets. In nASAP, four customized analysis modules are provided, including i) quality assessment, which summarizes the sequencing statistics, mapping ratio, and evaluates RNA integrity and mRNA contamination; ii) quantification analysis for mRNAs, lncRNAs and eRNAs; iii) pausing analysis across the whole genome based on sequencing reads distribution; and iv) network analysis to better understand the gene regulatory mechanism by obtaining annotated enhancer-promoter interactomes. The nASAP is user-friendly and outperforms the existing pipeline for quality control of nascent RNA profiling data. We anticipate that nASAP, which eases both basic and advanced analysis of nascent RNA data, will be extremely useful in various fields.


Subject(s)
Gene Expression Profiling , RNA, Messenger , Software , Data Analysis , Gene Expression Regulation , RNA, Messenger/genetics , Sequence Analysis, RNA
12.
Redox Biol ; 63: 102722, 2023 07.
Article in English | MEDLINE | ID: mdl-37167879

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are indispensable players in translation. Usually, two or three genes encode cytoplasmic and mitochondrial threonyl-tRNA synthetases (ThrRSs) in eukaryotes. Here, we reported that Caenorhabditis elegans harbors only one tars-1, generating cytoplasmic and mitochondrial ThrRSs via translational reinitiation. Mitochondrial tars-1 knockdown decreased mitochondrial tRNAThr charging and translation and caused pleotropic phenotypes of delayed development, decreased motor ability and prolonged lifespan, which could be rescued by replenishing mitochondrial tars-1. Mitochondrial tars-1 deficiency leads to compromised mitochondrial functions including the decrease in oxygen consumption rate, complex Ⅰ activity and the activation of the mitochondrial unfolded protein response (UPRmt), which contributes to longevity. Furthermore, deficiency of other eight mitochondrial aaRSs in C. elegans and five in mammal also caused activation of the UPRmt. In summary, we deciphered the mechanism of one tars-1, generating two aaRSs, and elucidated the biochemical features and physiological function of C. elegans tars-1. We further uncovered a conserved connection between mitochondrial translation deficiency and UPRmt.


Subject(s)
Amino Acyl-tRNA Synthetases , Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans/metabolism , Longevity/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Unfolded Protein Response , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Tars/metabolism , RNA, Transfer/metabolism , Mammals/genetics , Mammals/metabolism
14.
J Biol Chem ; 299(5): 104704, 2023 05.
Article in English | MEDLINE | ID: mdl-37059185

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 KO mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex, suggesting that Tarsl2 is a peripheral member of the multiple tRNA synthetase complex. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.


Subject(s)
Amino Acyl-tRNA Synthetases , Protein Biosynthesis , Threonine-tRNA Ligase , Animals , Mice , Amino Acyl-tRNA Synthetases/metabolism , RNA, Transfer/metabolism , Threonine-tRNA Ligase/genetics , Threonine-tRNA Ligase/metabolism , Zebrafish/genetics , Zebrafish/metabolism
15.
Rev Sci Instrum ; 94(2): 023001, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36858996

ABSTRACT

Continuously and widely tunable lasers, actively stabilized on a frequency reference, are broadly employed in atomic, molecular, and optical (AMO) physics. The frequency-stabilized optical frequency comb (OFC) provides a novel optical frequency reference, with a broadband spectrum that meets the requirement of laser frequency stabilization. Therefore, we demonstrate a frequency-stabilized and precisely tunable laser system based on it. In this scheme, the laser frequency locked to the OFC is driven to jump over the ambiguity zones, which blocks the wide tuning of the locked laser, and tuned until the mode hopping happens with the always-activated feedback loop. Meanwhile, we compensate the gap of the frequency jump with a synchronized acoustic optical modulator to ensure the continuity. This scheme is applied to an external cavity diode laser (ECDL), and we achieve tuning at a rate of about 7 GHz/s, with some readily available commercial electronics. Furthermore, we tune the frequency-stabilized laser only with the feedback of diode current, and its average tuning speed can exceed 100 GHz/s. Due to the resource-efficient configuration and the simplicity of completion, this scheme can be referenced and can find wide applications in AMO experiments.

17.
Nucleic Acids Res ; 50(22): 12951-12968, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36503967

ABSTRACT

Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.


Subject(s)
Amino Acyl-tRNA Synthetases , Transfer RNA Aminoacylation , Humans , Amino Acyl-tRNA Synthetases/metabolism , Cytoplasmic Ribonucleoprotein Granules/metabolism , RNA, Mitochondrial/metabolism , RNA, Transfer/metabolism
18.
Nucleic Acids Res ; 50(20): 11755-11774, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36350636

ABSTRACT

Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.


Subject(s)
Amino Acyl-tRNA Synthetases , COVID-19 , Serine-tRNA Ligase , Humans , Mice , Animals , RNA, Transfer, Ser/genetics , Serine-tRNA Ligase/genetics , Serine-tRNA Ligase/metabolism , Amino Acyl-tRNA Synthetases/genetics , Aminoacylation
19.
Nucleic Acids Res ; 50(7): 4012-4028, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357504

ABSTRACT

METTL8 has recently been identified as the methyltransferase catalyzing 3-methylcytidine biogenesis at position 32 (m3C32) of mitochondrial tRNAs. METTL8 also potentially participates in mRNA methylation and R-loop biogenesis. How METTL8 plays multiple roles in distinct cell compartments and catalyzes mitochondrial tRNA m3C formation remain unclear. Here, we discovered that alternative mRNA splicing generated several isoforms of METTL8. One isoform (METTL8-Iso1) was targeted to mitochondria via an N-terminal pre-sequence, while another one (METTL8-Iso4) mainly localized to the nucleolus. METTL8-Iso1-mediated m3C32 modification of human mitochondrial tRNAThr (hmtRNAThr) was not reliant on t6A modification at A37 (t6A37), while that of hmtRNASer(UCN) critically depended on i6A modification at A37 (i6A37). We clarified the hmtRNAThr substrate recognition mechanism, which was obviously different from that of hmtRNASer(UCN), in terms of requiring a G35 determinant. Moreover, SARS2 (mitochondrial seryl-tRNA synthetase) interacted with METTL8-Iso1 in an RNA-independent manner and modestly accelerated m3C modification activity. We further elucidated how nonsubstrate tRNAs in human mitochondria were efficiently discriminated by METTL8-Iso1. In summary, our results established the expression pattern of METTL8, clarified the molecular basis for m3C32 modification by METTL8-Iso1 and provided the rationale for the involvement of METTL8 in tRNA modification, mRNA methylation or R-loop biogenesis.


Subject(s)
Methyltransferases/metabolism , Mitochondria/metabolism , RNA, Transfer , Alternative Splicing , Humans , Methyltransferases/genetics , Mitochondria/genetics , RNA, Messenger , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Thr/genetics
20.
Cell Mol Life Sci ; 79(2): 128, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35133502

ABSTRACT

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.


Subject(s)
Lysine-tRNA Ligase/metabolism , Nuclear Proteins/metabolism , Aminoacylation , HEK293 Cells , Humans , Protein Binding , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...