Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2405265, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287118

ABSTRACT

Animal models of peripheral nerve injury (PNI) serve as the fundamental basis for the investigations of nerve injury, regeneration, and neuropathic pain. The injury properties of such models, including the intensity and duration, significantly influence the subsequent pathological changes, pain development, and therapeutic efficacy. However, precise control over the intensity and duration of nerve injury remains challenging within existing animal models, thereby impeding accurate and comparative assessments of relevant cases. Here, a new model that provides quantitative and off-body controllable injury properties via a magnetically controlled clamp, is presented. The clamp can be implanted onto the rat sciatic nerve and exert varying degrees of compression under the control of an external magnetic field. It is demonstrated that this model can accurately simulate various degrees of pathology of human patients by adjusting the magnetic control and reveal specific pathological changes resulting from intensity heterogeneity that are challenging to detect previously. The controllability and quantifiability of this model may significantly reduce the uncertainty of central response and inter-experimenter variability, facilitating precise investigations into nerve injury, regeneration, and pain mechanisms.

2.
J Nanobiotechnology ; 21(1): 447, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001489

ABSTRACT

BACKGROUND: Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes and the main cause of non-traumatic amputation, with no ideal treatment. Multiple cell-derived exosomes have been reported to improve the progression of DPN. Blood therapy is thought to have a powerful repairing effect. However, whether it could also improve DPN remains unclear. RESULTS: In this study, we found that microRNA (miRNA) expression in plasma-derived exosomes of healthy rats (hplasma-exos) was significantly different from that of age-matched DPN rats. By injection of hplasma-exos into DPN rats, the mechanical sensitivity of DPN rats was decreased, the thermal sensitivity and motor ability were increased, and the nerve conduction speed was accelerated. Histological analysis showed myelin regeneration of the sciatic nerve, increased intraepidermal nerve fibers, distal local blood perfusion, and enhanced neuromuscular junction and muscle spindle innervation after hplasma-exos administration. Compared with plasma exosomes in DPN, miR-20b-3p was specifically enriched in exosomes of healthy plasma and was found to be re-upregulated in the sciatic nerve of DPN rats after hplasma-exos treatment. Moreover, miR-20b-3p agomir improved DPN symptoms to a level similar to hplasma-exos, both of which also alleviated autophagy impairment induced by high glucose in Schwann cells. Mechanistic studies found that miR-20b-3p targeted Stat3 and consequently reduced the amount of p-Stat3, which then negatively regulated autophagy processes and contributed to DPN improvement. CONCLUSIONS: This study demonstrated that miRNA of plasma exosomes was different between DPN and age-matched healthy rats. MiR-20b-3p was enriched in hplasma-exos, and both of them could alleviated DPN symptoms. MiR-20b-3p regulated autophagy of Schwann cells in pathological states by targeting Stat3 and thereby inhibited the progression of DPN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Exosomes , MicroRNAs , Peripheral Nervous System Diseases , Animals , Rats , Diabetes Mellitus, Experimental/metabolism , Exosomes/metabolism , MicroRNAs/metabolism , Peripheral Nervous System Diseases/metabolism
3.
Int Immunopharmacol ; 121: 110562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364324

ABSTRACT

Neuropathic pain caused by somatosensory system injuries is notoriously difficult to treat. Previous research has shown that neuroinflammation and cell death have been implicated in the pathophysiology of neuropathic pain. Pyroptosis is a form of programmed cell death associated with inflammatory processes, as it can enhance or sustain the inflammatory response by releasing pro-inflammatory cytokines. This review presents the current knowledge on pyroptosis and its underlying mechanisms, including the canonical and noncanonical pathways. Moreover, we discuss recent findings on the role of pyroptosis in neuropathic pain and its potential as a therapeutic target. In conclusion, this review highlights the potential significance of pyroptosis as a promising target for developing innovative therapies to treat neuropathic pain.


Subject(s)
Neuralgia , Pyroptosis , Humans , Apoptosis , Cell Death , Cytokines/metabolism , Neuralgia/drug therapy , Inflammasomes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL