Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
ACS Med Chem Lett ; 15(8): 1213-1220, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39140066

ABSTRACT

Developing selective CDK7 inhibitors has emerged as a promising approach for cancer treatment owing to the critical role of CDK7 in cancer progression. Starting from BTX-A51, a CK1α inhibitor that also targets CDK7 and CDK9, we designed and synthesized a series of 2,4-diaminopyrimidine derivatives as potent CDK7 inhibitors. The representative compound, 22, displayed significant enzymatic inhibitory activity and demonstrated a remarkable selectivity profile against a panel of kinases, including seven CDK subtypes. Modeling studies and molecular dynamics simulations revealed that the sulfone group of 22 significantly enhanced the binding affinity, while the acetyl group contributed to the increased selectivity of CDK7 against CDK9. Compound 22 effectively inhibited the phosphorylation of RNA polymerase II and CDK2 and resulted in G1/S phase cell cycle arrest and apoptosis in MV4-11 cells. It appears to be a promising lead compound for the development of a CDK7 inhibitor for cancer therapy.

2.
Adv Sci (Weinh) ; : e2405963, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120042

ABSTRACT

Protein arginine methyltransferase 3 (PRMT3) plays an important role in gene regulation and a variety of cellular functions, thus, being a long sought-after therapeutic target for human cancers. Although a few PRMT3 inhibitors are developed to prevent the catalytic activity of PRMT3, there is little success in removing the cellular levels of PRMT3-deposited ω-NG,NG-asymmetric dimethylarginine (ADMA) with small molecules. Moreover, the non-enzymatic functions of PRMT3 remain required to be clarified. Here, the development of a first-in-class MDM2-based PRMT3-targeted Proteolysis Targeting Chimeras (PROTACs) 11 that selectively reduced both PRMT3 protein and ADMA is reported. Importantly, 11 inhibited acute leukemia cell growth and is more effective than PRMT3 inhibitor SGC707. Mechanism study shows that 11 induced global gene expression changes, including the activation of intrinsic apoptosis and endoplasmic reticulum stress signaling pathways, and the downregulation of E2F, MYC, oxidative phosphorylation pathways. Significantly, the combination of 11 and glycolysis inhibitor 2-DG has a notable synergistic antiproliferative effect by further reducing ATP production and inducing intrinsic apoptosis, thus further highlighting the potential therapeutic value of targeted PRMT3 degradation. These data clearly demonstrated that degrader 11 is a powerful chemical tool for investigating PRMT3 protein functions.

3.
J Colloid Interface Sci ; 676: 859-870, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39067221

ABSTRACT

The catalytic oxidation of formaldehyde (HCHO) at ambient temperature is a highly efficient, cost-effective and environmentally friendly approach for formaldehyde removal. Reactive oxygen (O*) and reactive hydroxyl groups (OH*) are the main active species in the catalytic oxidation reaction of HCHO. Therefore, it is crucial to design catalysts that can simultaneously enhance the surface concentrations of O* and OH*, thereby improving their overall catalytic performance. The present study aimed to design an Al2O3/CoNC catalyst featuring layered carbon nitride coupled with metal oxides possessing domain-limited cobalt (Co) metal active sites, to efficiently remove HCHO (≈100 %, 100 ppm, RH=50 %, GSHV=20,000 mL/(g h)) and ensure stability (more than 90 % formaldehyde removal within 450 h) at ambient temperature. The characterization revealed that the interaction between Al2O3-supported metal and CoNC resulted in enhanced confinement of Co, leading to a higher abundance of edge structures exposing more active sites. Additionally, the presence of highly dispersed Co-NX active sites and increased oxygen vacancies effectively facilitated the adsorption and activation processes of HCHO and O2, as well as the adsorption and desorption dynamics of intermediates during the reaction. These factors collectively contributed to an improved catalytic activity. The results of in situ infrared spectroscopy revealed that the catalyst improved the adsorption and activation of O2 and H2O, leading to the rapid generation of substantial amounts of O* and OH*. This synergistic interaction between Al2O3 and CoNC plays a crucial role in the sustained production of O* and OH*, promoting efficient of intermediate decomposition, and ensuring excellent catalytic activity and stability for HCHO.

4.
Sci Rep ; 14(1): 16581, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019995

ABSTRACT

Osteosarcoma is an aggressive form of bone cancer and affects the health in children and adolescents. Although conventional treatment improves the osteosarcoma survival, some patients have metastasis and drug resistance, leading to a worse prognosis. Therefore, it is necessary to explore the molecular mechanism of osteosarcoma occurrence and progression, which could discover the novel treatment for osteosarcoma. Long noncoding RNAs (lncRNAs) have been reported to regulate osteosarcoma occurrence and malignant progression. LncRNA HOXA-AS3 facilitates the tumorigenesis and progression in a variety of human cancers. However, the underlying mechanism of lncRNA HOXA-AS3-induced oncogenesis is poorly determined in osteosarcoma. To address this point, we utilized several cellular biological strategies and molecular approaches to explore the biological functions and mechanisms of lncRNA HOXA-AS3 in osteosarcoma cells. We found that lncRNA HOXA-AS3 facilitates cell proliferation and invasion via targeting miR-218-5p/FOXP1 axis in osteosarcoma. In conclusion, lncRNA HOXA-AS3 could be a promising target for osteosarcoma treatment.


Subject(s)
Bone Neoplasms , Cell Proliferation , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Repressor Proteins , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Neoplasm Invasiveness , Cell Movement/genetics
5.
J Med Chem ; 67(15): 12735-12759, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39053006

ABSTRACT

The ataxia telangiectasia-mutated and Rad3-related protein (ATR) plays a crucial role in regulating the cellular DNA-damage response (DDR), making it a promising target for antitumor drug development through synthetic lethality. In this study, we present the discovery and detailed characterization of AD1058, a highly potent and selective ATR inhibitor, with good preclinical pharmacokinetic profiles. AD1058 exhibits superior efficacy in inhibiting cell proliferation, disrupting the cell cycle, and inducing apoptosis compared to AZD6738. AD1058 displays potent antitumor effects as a single agent or in combination with clinically approved tumor therapies such as PARP inhibitors, ionizing radiotherapy, or chemotherapy in vivo. Considering its enhanced ability to permeate the blood-brain barrier, AD1058 is a promising clinical candidate for the treatment of brain metastases and leptomeningeal metastases in solid tumors. Additionally, among reported ATR inhibitors, AD1058 features the shortest synthesis route and the highest efficiency to date.


Subject(s)
Antineoplastic Agents , Ataxia Telangiectasia Mutated Proteins , Cell Proliferation , Humans , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Drug Discovery , Apoptosis/drug effects , Structure-Activity Relationship , Rats , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Male , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Mice, Nude , Brain/metabolism , Female , Blood-Brain Barrier/metabolism
6.
J Med Chem ; 67(15): 13197-13216, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39028938

ABSTRACT

USP7 is an attractive therapeutic target for cancers, especially for acute lymphoblastic leukemia (ALL) with wild-type p53. Herein, we report the discovery of XM-U-14 as a highly potent, selective and efficacious USP7 proteolysis-targeting chimera degrader. XM-U-14 achieves DC50 values of 0.74 nM and Dmax of 93% in inducing USP7 degradation in RS4;11 cell lines, and also significantly inhibits ALL cell growth. XM-U-14 even at 5 mg/kg dosed daily effectively inhibits RS4;11 tumor growth with 64.7% tumor regressions and causes no signs of toxicity in mice. XM-U-14 is a promising USP7 degrader for further optimization for ALL treatment.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Ubiquitin-Specific Peptidase 7 , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Mice , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Drug Discovery , Structure-Activity Relationship , Proteolysis/drug effects
7.
Cell Mol Immunol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030423

ABSTRACT

Sterile neuroinflammation is a major driver of multiple neurological diseases. Myelin debris can act as an inflammatory stimulus to promote inflammation and pathologies, but the mechanism is poorly understood. Here, we showed that lysophosphatidylserine (LysoPS)-GPR34 axis played a critical role in microglia-mediated myelin debris sensing and the subsequent neuroinflammation. Myelin debris-induced microglia activation and proinflammatory cytokine expression relied on its lipid component LysoPS. Both myelin debris and LysoPS promoted microglia activation and the production of proinflammatory cytokines via GPR34 and its downstream PI3K-AKT and ERK signaling. In vivo, reducing the content of LysoPS in myelin or inhibition of GPR34 with genetic or pharmacological approaches reduced neuroinflammation and pathologies in the mouse models of multiple sclerosis and stroke. Thus, our results identify GPR34 as a key receptor to sense demyelination and CNS damage and promote neuroinflammation, and suggest it as a potential therapeutic target for demyelination-associated diseases.

8.
Psychol Bull ; 150(7): 798-838, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38913732

ABSTRACT

Although health-promotion interventions that recommend changes across multiple behavioral domains are a newer alternative to single-behavior interventions, their general efficacy and their mechanisms of change have not been fully ascertained. This comprehensive meta-analysis (6,878 effect sizes from 803 independent samples from 364 research reports, N = 186,729 participants) examined the association between the number of behavioral recommendations in multiple-behavior interventions and behavioral and clinical change across eight domains (i.e., diet, smoking, exercise, HIV [Human Immunodeficiency Virus] prevention, HIV testing, HIV treatment, alcohol use, and substance use). Results showed a positive, linear effect of the number of behavioral recommendations associated with behavioral and clinical change across all domains, although approximately 87% of the samples included between 0 and 4 behavioral recommendations. This linear relation was mediated by improvements in the psychological well-being of intervention recipients and, in several domains (i.e., HIV, alcohol use, and drug use), suggested behavioral cuing. However, changes in information, motivation, and behavioral skills did not mediate the impact of the number of recommendations on behavioral and clinical change. The implications of these findings for theory and future intervention design are discussed. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Health Behavior , Health Promotion , Humans , Health Promotion/methods , HIV Infections/prevention & control , HIV Infections/psychology , Behavior Therapy/methods , Substance-Related Disorders/psychology , Substance-Related Disorders/therapy
9.
J Med Chem ; 67(13): 11326-11353, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913763

ABSTRACT

BRD9 is a pivotal epigenetic factor involved in cancers and inflammatory diseases. Still, the limited selectivity and poor phenotypic activity of targeted agents make it an atypically undruggable target. PROTAC offers an alternative strategy for overcoming the issue. In this study, we explored diverse E3 ligase ligands for the contribution of BRD9 PROTAC degradation. Through molecular docking, binding affinity analysis, and structure-activity relationship study, we identified a highly potent PROTAC E5, with excellent BRD9 degradation (DC50 = 16 pM) and antiproliferation in MV4-11 cells (IC50 = 0.27 nM) and OCI-LY10 cells (IC50 = 1.04 nM). E5 can selectively degrade BRD9 and induce cell cycle arrest and apoptosis. Moreover, the therapeutic efficacy of E5 was confirmed in xenograft tumor models, accompanied by further RNA-seq analysis. Therefore, these results may pave the way and provide the reference for the discovery and investigation of highly effective PROTAC degraders.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Molecular Docking Simulation , Ubiquitin-Protein Ligases , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Mice , Drug Discovery , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Apoptosis/drug effects , Proteolysis/drug effects , Mice, Nude , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Screening Assays, Antitumor , Bromodomain Containing Proteins
10.
J Med Chem ; 67(12): 10035-10056, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38885173

ABSTRACT

Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, effective therapies for TNBC are very limited and remain a significant unmet clinical need. Targeting the transcription-regulating cyclin-dependent kinase 9 (CDK9) has emerged as a promising avenue for therapeutic treatment of TNBC. Herein, we report the design, synthesis, optimization, and evaluation of a new series of aminopyrazolotriazine compounds as orally bioavailable, potent, and CDK9/2 selectivity-improved inhibitors, enabling efficacious inhibition of TNBC cell growth, as well as notable antitumor effect in TNBC models. The compound C35 demonstrated low-nanomolar potency with substantially improved CDK9/2 selectivity, downregulated the CDK9-downstream targets (e.g., MCL-1), and induced apoptosis in TNBC cell lines. Moreover, with the desired oral bioavailability, oral administration of C35 could significantly suppress the tumor progression in two TNBC mouse models. This study demonstrates that target transcriptional regulation is an effective strategy and holds promising potential as a targeted therapy for the treatment of TNBC.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinase 9 , Protein Kinase Inhibitors , Triple Negative Breast Neoplasms , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Administration, Oral , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Mice , Cell Line, Tumor , Structure-Activity Relationship , Biological Availability , Cell Proliferation/drug effects , Apoptosis/drug effects , Drug Discovery , Transcription, Genetic/drug effects , Mice, Nude , Xenograft Model Antitumor Assays
11.
Medicine (Baltimore) ; 103(26): e38535, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941431

ABSTRACT

OBJECTIVE: To investigate causal associations between diabetes, insulin treatment and osteoporosis using LDSC analysis with a 2-way Mendelian randomization study. METHODS: LDSC analysis was used to estimate the likelihood-scale heritability of the genome-wide association study used with genetic correlation between the 2 genome-wide association study used. Then a 2-sample Mendelian randomization study was performed using 3 methods including inverse variance weighted, MR Egger, and weighted median. RESULTS: The genetic correlation between diabetes, insulin treatment (h2_Z = 3.70, P = 2.16e-4), osteoporosis (h2_Z = 4.93, h2_p = 8.13e-7) and genes was significant. There was a significant genetic correlation (rg = 0.122, P = 0.0211). There was a causal association between diabetes, insulin treatment and osteoporosis [P = 0.003754, OR (95%CI) = 0.998876 (0.998116-0.999636)], while no causal association existed between osteoporosis and insulin use (P = 0.998116-0.999636) causal association existed (P = 0.333244). CONCLUSION: There was a strong genetic correlation between diabetes, insulin treatment and osteoporosis, a causal association between diabetes, insulin treatment and osteoporosis, and no causal association between osteoporosis and diabetes, insulin treatment.


Subject(s)
Genome-Wide Association Study , Insulin , Mendelian Randomization Analysis , Osteoporosis , Humans , Insulin/therapeutic use , Insulin/adverse effects , Osteoporosis/genetics , Osteoporosis/epidemiology , Diabetes Mellitus/genetics , Diabetes Mellitus/epidemiology , Polymorphism, Single Nucleotide
12.
J Phys Chem B ; 128(25): 6123-6133, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38875519

ABSTRACT

The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 µM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 µM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.


Subject(s)
Cell Proliferation , Isatin , Isatin/chemistry , Isatin/pharmacology , Isatin/chemical synthesis , Humans , HeLa Cells , Cell Proliferation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Cell Line, Tumor , Fluorescence
13.
Nutrients ; 16(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892676

ABSTRACT

BACKGROUND: Breastfeeding could improve a child's health early on, but its long-term effects on childhood behavioral and emotional development remain inconclusive. We aimed to estimate the associations of feeding practice with childhood behavioral and emotional development. METHODS: In this population-based birth cohort study, data on feeding patterns for the first 6 mo of life, the duration of breastfeeding, and children's emotional and behavioral outcomes were prospectively collected from 2489 mother-child dyads. Feeding patterns for the first 6 mo included exclusive breastfeeding (EBF) and non-exclusive breastfeeding (non-EBF, including mixed feeding or formula feeding), and the duration of breastfeeding (EBF or mixed feeding) was categorized into ≤6 mo, 7-12 mo, 13-18 mo, and >18 mo. Externalizing problems and internalizing problems were assessed with the Child Behavior Checklist (CBCL) and operationalized according to recommended clinical cutoffs, corresponding to T scores ≥64. Multivariable linear regression and logistic regression were used to evaluate the association of feeding practice with CBCL outcomes. RESULTS: The median (interquartile range) age of children at the outcome measurement was 32.0 (17.0) mo. Compared with non-EBF for the first 6 mo, EBF was associated with a lower T score of internalizing problems [adjusted mean difference (aMD): -1.31; 95% confidence interval (95% CI): -2.53, -0.10], and it was marginally associated with T scores of externalizing problems (aMD: -0.88; 95% CI: -1.92, 0.15). When dichotomized, EBF versus non-EBF was associated with a lower risk of externalizing problems (aOR: 0.54, 95% CI: 0.34, 0.87), and it was marginally associated with internalizing problems (aOR: 0.75, 95% CI: 0.54, 1.06). Regarding the duration of breastfeeding, breastfeeding for 13-18 mo versus ≤6 mo was associated with lower T scores of internalizing problems (aMD: -2.50; 95% CI: -4.43, -0.56) and externalizing problems (aMD: -2.75; 95% CI: -4.40, -1.10), and breastfeeding for >18 mo versus ≤6 mo was associated with lower T scores of externalizing problems (aMD: -1.88; 95% CI: -3.68, -0.08). When dichotomized, breastfeeding for periods of 7-12 mo, 13-18 mo, and >18 mo was associated with lower risks of externalizing problems [aOR (95% CI): 0.96 (0.92, 0.99), 0.94 (0.91, 0.98), 0.96 (0.92, 0.99), respectively]. CONCLUSIONS: Exclusive breastfeeding for the first 6 mo and a longer duration of breastfeeding, exclusively or partially, are beneficial for childhood behavioral and emotional development.


Subject(s)
Breast Feeding , Child Behavior , Child Development , Emotions , Humans , Breast Feeding/psychology , Female , China/epidemiology , Prospective Studies , Male , Infant , Child, Preschool , Child Behavior/psychology , Infant, Newborn , Adult , Birth Cohort
14.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718626

ABSTRACT

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Subject(s)
Adaptor Proteins, Signal Transducing , Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Drug Discovery , Liver Neoplasms , Transcription Factors , Ubiquitin Thiolesterase , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Structure-Activity Relationship , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor
15.
Lipids Health Dis ; 23(1): 150, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773587

ABSTRACT

BACKGROUND: Frailty is a dynamic geriatric condition. Limited studies have examined the association of the triglyceride-glucose (TyG) index and its related indicators [TyG index, triglyceride glucose-waist to height ratio (TyG-WHtR), triglyceride glucose-waist circumference (TyG-WC), and triglyceride glucose-body mass index (TyG-BMI)] with frailty, and the potential links among them remain unclear. On the basis of data from the National Health and Nutrition Examination Survey (NHANES), this study investigated the potential relationships of the TyG index and its related indices with frailty. METHODS: This research included 7,965 participants from NHANES 2003-2018. The relationship of the TyG index and its related indices with frailty was investigated with binary logistic regression analyses, restricted cubic spline (RCS), and receiver operating characteristic (ROC) curve. Potential influences were further investigated through stratified analyses and interaction tests. RESULTS: The prevalence of frailty in the participants of this study was 25.59%, with a average frailty index of 0.16 (0.00). In the three regression analysis models, the continuous TyG index and its associated indices were positively associated with frailty. In addition, quartiles of TyG, TyG-WC, TyG-WHtR, and TyG-BMI were significantly associated with increased frailty prevalence in the fully adjusted models (TyG Q4 vs. Q1, OR = 1.58, 95% CI: 1.19, 2.09, P = 0.002; TyG-WC Q4 vs. Q1, OR = 2.40, 95% CI: 1.90, 3.04, P < 0.001; TyG-WHtR Q4 vs. Q1, OR = 2.26, 95% CI: 1.82, 2.81, P < 0.001; TyG- BMI Q4 vs. Q1, OR = 2.16, 95% CI: 1.76, 2.64, P < 0.001). According to RCS analysis, TyG, TyG-WC, TyG-WHtR, and TyG-BMI were linearly and positively associated with frailty. ROC curves revealed that TyG-WHtR (AUC: 0.654) had greater diagnostic value for frailty than TyG (AUC: 0.604), TyG-BMI (AUC: 0.621), and TyG-WC (AUC: 0.629). All of the stratified analyses and interaction tests showed similar results. CONCLUSIONS: Elevated TyG and its associaed indices are associated with an increased prevalence of frailty. Reasonable control of blood glucose and blood lipids, and avoidance of obesity, may aid in reducing the occurrence of frailty in middle-aged and older adults.


Subject(s)
Blood Glucose , Body Mass Index , Frailty , Nutrition Surveys , Triglycerides , Humans , Triglycerides/blood , Frailty/blood , Frailty/diagnosis , Frailty/epidemiology , Female , Male , Aged , Blood Glucose/analysis , Blood Glucose/metabolism , Middle Aged , ROC Curve , Waist Circumference , Prevalence , Logistic Models , Aged, 80 and over , Frail Elderly
16.
Nutr Rev ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607346

ABSTRACT

CONTEXT: Gestational weight gain (GWG) is known to be a risk factor for offspring obesity, a precursor of cardiometabolic diseases. Accumulating studies have investigated the association of GWG with offspring cardiometabolic risk factors (CRFs), leading to inconsistent results. OBJECTIVE: This study synthesized available data from cohort studies to examine the effects of GWG on offspring CRFs. DATA SOURCE: Four electronic databases, including PubMed, Web of Science, Scopus, and Embase, were searched through May 2023. DATA EXTRACTION: Cohort studies evaluating the association between GWG and CRFs (fat mass [FM], body fat percentage [BF%], waist circumference [WC], systolic blood pressure [SBP] and diastolic blood pressure, high-density-lipoprotein cholesterol [HDL-C] and low-density-lipoprotein cholesterol, triglyceride [TG], total cholesterol, fasting blood glucose, and fasting insulin levels) were included. Regression coefficients, means or mean differences with 95% confidence intervals [CIs], or standard deviations were extracted. DATA ANALYSIS: Thirty-three cohort studies were included in the meta-analysis. Higher GWG (per increase of 1 kg) was associated with greater offspring FM (0.041 kg; 95% CI, 0.016 to 0.067), BF% (0.145%; 95% CI, 0.116 to 0.174), WC (0.154 cm; 95% CI, 0.036 to 0.272), SBP (0.040 mmHg; 95% CI, 0.010 to 0.070), and TG (0.004 mmol/L; 95% CI, 0.001 to 0.007), and with lower HDL-C (-0.002 mmol/L; 95% CI, -0.004 to 0.000). Consistently, excessive GWG was associated with higher offspring FM, BF%, WC, and insulin, and inadequate GWG was associated with lower BF%, low-density lipoprotein cholesterol, total cholesterol, and TG, compared with adequate GWG. Most associations went non-significant or attenuated with adjustment for offspring body mass index or FM. CONCLUSIONS: Higher maternal GWG is associated with increased offspring adiposity, SBP, TG, and insulin and decreased HDL-C in offspring, warranting a need to control GWG and to screen for cardiometabolic abnormalities of offspring born to mothers with excessive GWG. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42023412098.

17.
Chem Sci ; 15(13): 5027-5035, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550694

ABSTRACT

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is overexpressed and/or overactivated in many human cancers and has been shown to play a critical role during oncogenesis. Despite the potential of Pin1 as a drug target, its successful targeting has proved to be challenging. We speculate that only blocking the enzymatic function of Pin1 with inhibitors may not be sufficient to lead to a total loss-of-function. Here, we report the discovery of P1D-34, a first-in-class and potent PROTAC degrader of Pin1, which induced Pin1 degradation with a DC50 value of 177 nM and exhibited potent degradation-dependent anti-proliferative activities in a panel of acute myeloid leukemia (AML) cell lines. In contrast, Pin1 inhibitor Sulfopin did not show activity. More significantly, P1D-34 could sensitize Bcl-2 inhibitor ABT-199 in Bcl-2 inhibitor-resistant AML cells, highlighting the potential therapeutic value of targeted Pin1 degradation for Bcl-2 inhibitor-resistant AML treatment. Further mechanism study revealed that P1D-34 led to the up-regulation of ROS pathway and down-regulation of UPR pathway to induce cell DNA damage and apoptosis. Notably, we further demonstrated that treatment with the combination formula of glucose metabolism inhibitor 2-DG and P1D-34 led to a notable synergistic anti-proliferative effect, further expanding its applicability. These data clearly reveal the practicality and importance of PROTAC as a preliminary tool compound suitable for assessment of Pin1-dependent pharmacology and a promising strategy for AML treatment.

18.
Pediatr Res ; 95(7): 1775-1782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38347169

ABSTRACT

INTRODUCTION: Epidemiological evidence suggests an association between CS and offspring metabolic syndrome (MetS), but whether a causal relationship exists is unknown. METHODS: In this study, timed-mated Wistar rat dams were randomly assigned to cesarean section (CS), vaginal delivery (VD), and surrogate groups. The offspring from both CS and VD groups were reared by surrogate dams until weaning, and weaned male offspring from both groups were randomly assigned to receive normal diet (ND) or high-fat/high-fructose diet (HFF) ad libitum for 39 weeks. RESULTS: By the end of study, CS-ND offspring gained 17.8% more weight than VD-ND offspring, while CS-HFF offspring gained 36.4% more weight than VD-HFF offspring. Compared with VD-ND offspring, CS-ND offspring tended to have increased triglycerides (0.27 mmol/l, 95% CI, 0.05 to 0.50), total cholesterol (0.30 mmol/l, -0.08 to 0.68), and fasting plasma glucose (FPG) (0.30 mmol/l, -0.01 to 0.60); more pronounced differences were observed between CS-HFF and VD-HFF offspring in these indicators (triglyceride, 0.66 mmol/l, 0.35 to 0.97; total cholesterol, 0.46 mmol/l, 0.13 to 0.79; and FPG, 0.55 mmol/l, 0.13 to 0.98). CONCLUSIONS: CS offspring were more prone to adverse metabolic profile and HFF might exacerbate this condition, indicating the association between CS and MetS is likely to be causal. IMPACT: Whether the observed associations between CS and MetS in non-randomized human studies are causally relevant remains undetermined. Compared with vaginally born offspring rats, CS born offspring gained more body weight and tended to have compromised lipid profiles and abnormal insulin sensitivity, suggesting a causal relationship between CS and MetS that may be further amplified by a high-fat/high-fructose diet. Due to the high prevalence of CS births globally, greater clinical consideration must be given to the potential adverse effects of CS, and whether these risks should be made known to patients in clinical practice merits evaluation.


Subject(s)
Blood Glucose , Cesarean Section , Metabolic Syndrome , Rats, Wistar , Animals , Metabolic Syndrome/etiology , Female , Male , Pregnancy , Rats , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Triglycerides/blood , Cholesterol/blood , Fructose/adverse effects , Fructose/administration & dosage
19.
RSC Med Chem ; 15(2): 539-552, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38389894

ABSTRACT

Here, we discover an FLT3/CHK1 dual inhibitor (30) that exhibits excellent kinase potency and antiproliferative activity against MV4-11 cells. Simultaneously, 30 possesses high selectivity over c-Kit enzyme and low hERG inhibitory ability. Compound 30, meanwhile, overcomes varied resistance in BaF3 cell lines carrying FLT3-TKD and FLT3-ITD mutations. Moreover, 30 demonstrates favorable oral PK properties and kinase selectivity. These conclusions support that compound 30 may be a promising potential FLT3/CHK1 dual agent for further development.

20.
Bioorg Chem ; 145: 107217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368657

ABSTRACT

Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.


Subject(s)
Intrinsically Disordered Proteins , Neoplasms , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Drug Design , Neoplasms/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL