Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.368
Filter
1.
Front Pharmacol ; 15: 1392123, 2024.
Article in English | MEDLINE | ID: mdl-38962302

ABSTRACT

Introduction: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods: We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results: Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion: Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.

2.
Sci Rep ; 14(1): 15449, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965392

ABSTRACT

Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.


Subject(s)
Hyperuricemia , Metabolomics , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Rats , Metabolomics/methods , Uric Acid/blood , Male , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Xanthine Oxidase/metabolism , Disease Models, Animal
3.
Anal Methods ; 16(25): 4150-4159, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38864437

ABSTRACT

Vegetable oil and animal fat residues are common evidence in the cases of homicide, arson, theft, and other crimes. However, the lipid composition and content changes during aging on complex carriers remain unclear. Therefore, this study dynamically monitored the lipid composition and content changes during aging of 13 different types of vegetable oils and animal fats on five different carriers using the UPLC-Q-Exactive Orbitrap MS method. A total of 6 subclasses of 93 lipids including lysophosphatidylcholine (2 species), phosphatidylcholine (2 species), diglyceride (5 species), triglyceride (81 species), acylGlcCampesterol ester (2 species), and acylGlcSitosterol ester (1 species), were first identified in fresh vegetable oils and animal fats. By comparing the LC-MS/MS chromatograms of fresh vegetable oils and animal fats, it was found that there were significant differences between the chromatograms of vegetable oils and animal fats, but it was difficult to distinguish between the chromatograms of vegetable oils or animal fats. After aging at 60 °C for 200 days, there was a significant decrease in the content of diglyceride, triglyceride, acylGlcCampesterol ester, and acylGlcSitosterol ester, while the content of lysophosphatidylcholine and phosphatidylcholine initially increased and then decreased. Furthermore, statistical analysis of lipid differences between vegetable oils and animal fats was performed using cluster heat maps, volcanic maps, PCA, and OPLS-DA. On average, 33 significantly different lipids were screened (VIP > 1, p < 0.05), which could serve as potential biomarkers for distinguishing vegetable oils and animal fats. It was found that the potential biomarkers still existed during aging of vegetable oils and animal fats (100 and 200 days). This research provides important reference information for the identification of vegetable oil and animal fat residues in complex carriers at crime scenes.


Subject(s)
Lipidomics , Plant Oils , Plant Oils/chemistry , Plant Oils/analysis , Animals , Chromatography, High Pressure Liquid/methods , Lipidomics/methods , Lipids/analysis , Tandem Mass Spectrometry/methods , Fats/chemistry , Fats/analysis
4.
Eur J Med Res ; 29(1): 325, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867253

ABSTRACT

OBJECTIVE: Previous studies have shown a clear link between insulin resistance (IR) and an elevated risk of atrial fibrillation (AF). However, the relationship between the estimated glucose disposal rate (eGDR), which serves as a marker for IR, and the risk of AF recurrence after radiofrequency catheter ablation (RFCA) remains uncertain. Therefore, this study aimed to examine the potential association between the eGDR and the risk of AF recurrence following RFCA. METHODS: This retrospective study was conducted at Nanchang University Affiliated Second Hospital. The study enrolled 899 patients with AF who underwent RFCA between January 2015 and January 2022. The formula used to calculate the eGDR was as follows: 19.02 - (0.22 * body mass index) - (3.26 * hypertension) - (0.61 * HbA1c). Cox proportional hazard regression models and exposure-effect curves were used to explore the correlation between the baseline eGDR and AF recurrence. The ability of the eGDR to predict AF recurrence was evaluated using the area under the receiver operating characteristic curve (AUROC). RESULTS: The study observed a median follow-up period of 11.63 months, during which 296 patients experienced AF recurrence. K‒M analyses revealed that the cumulative incidence AF recurrence rate was significantly greater in the group with the lowest eGDR (log-rank p < 0.01). Participants with an eGDR ≥ 8 mg/kg/min had a lower risk of AF recurrence than those with an eGDR < 4 mg/kg/min, with a hazard ratio (HR) of 0.28 [95% confidence interval (CI) 0.18, 0.42]. Additionally, restricted cubic spline analyses demonstrated a linear association between the eGDR and AF recurrence (p nonlinear = 0.70). The area under the curve (AUC) for predicting AF recurrence using the eGDR was 0.75. CONCLUSIONS: The study revealed that a decrease in the eGDR is associated with a greater AF recurrence risk after RFCA. Hence, the eGDR could be used as a novel biomarker for assessing AF recurrence risk.


Subject(s)
Atrial Fibrillation , Blood Glucose , Catheter Ablation , Recurrence , Humans , Atrial Fibrillation/surgery , Male , Female , Retrospective Studies , Middle Aged , Catheter Ablation/methods , Blood Glucose/metabolism , Blood Glucose/analysis , Aged , Risk Factors , Insulin Resistance
5.
Bioresour Technol ; 406: 130946, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857635

ABSTRACT

In this manuscript, three components of lignocellulosic biomass were obtained by deconstructing bamboo with γ-valerolactone-H2O biphasic system, and the delignification rate of 80.92 % was achieved at 120 °C for 90 min. Lignin nanospheres with diameters ranging from 75 nm to 2 um could be customized by varying the self-assembly rate. Furthermore, the lignin nanospheres-poly(vinyl alcohol) film was prepared by cross-linking lignin nanospheres and poly(vinyl alcohol), which can obtain 90 % ultraviolet absorption capacity, while the light transmittance in non-ultraviolet band was almost unchanged. At the same time, due to the strong hydrogen formation between lignin nanospheres and poly(vinyl alcohol) bond network, the tensile properties of the composite film were also improved by 30 %. Besides, the high specific surface area of biomass-derived porous biochar (2056 m2/g) can be obtained after carbonization of solid residues at 850 °C for 2 h, which was almost 8 times the specific surface area of the direct biomass carbonization due to the removal of lignin and hemicellulose. biomass-derived porous biochar can be used as an adsorbent, with a CO2 capture capacity of 4.5 mmol g-1 at normal temperature (25 °C, 1 bar). The filtrate after the reaction contained a large amount of hemicellulose oligomers, which can be reacted with dichloromethane at 170 °C for 1 h to obtain the furfural yield of 74 %. In summary, the proposed biorefinery scheme achieves a full-component upgrade of lignocellulose and can be further applied in various downstream fields.

6.
J Mater Chem B ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899871

ABSTRACT

Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 µm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.

7.
BMC Complement Med Ther ; 24(1): 239, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890651

ABSTRACT

BACKGROUND: Insomnia is common in college students, but its impact on health and wellbeing is often neglected. Enhancing sleep quality through targeted interventions could improve overall health and reduce the risk of consequent co-morbidities and mental health problems. Qigong exercises have been shown to significantly improve sleep quality and relieve insomnia. Three-circle Post Standing (TCPS) can help integrate body, breath, and mind, a fundamental principle of Qigong that promotes holistic wellbeing. In this clinical trial, we aim to (1) evaluate the feasibility, safety, and therapeutic efficacy of administering TCPS to improve sleep quality and quality of life in college students with insomnia; (2) explore the neurophysiological mechanisms underlying the mind adjustments mediated by TCPS in insomnia; (3) investigate body and breath pathophysiology mediated by TCPS in insomnia; and (4) assess the long-term efficacy of TCPS in terms of sleep quality and quality of life. METHODS: This will be a prospective, parallel, four-arm, double-blind randomized controlled trial to investigate the effects and underlying mechanisms of TCPS on college students with insomnia. One hundred college students meeting diagnostic criteria for insomnia will be randomly assigned to receive either 14 weeks of standardized TCPS training (two weeks of centralized training followed by 12 weeks of supervised training) or sham-control Post Standing training. Efficacy outcomes including sleep quality, quality of life, neurophysiological assessments, plantar pressure, biomechanical balance, and physical measures will be collected at baseline, eight weeks (mid-point of supervised training), and 14 weeks (end of supervised training). Sleep quality and quality of life will also be evaluated during the four- and eight-week follow-up. DISCUSSION: This trial will be an important milestone in the development of new therapeutic approaches for insomnia and should be easily implementable by college students with insomnia. The neuro- and pathophysiological assessments will provide new insights into the mechanisms underlying TCPS. CLINICAL TRIAL REGISTRATION: This trial has been registered in the China Clinical Trials Registry (registration number: ChiCTR2400080763).


Subject(s)
Qigong , Sleep Initiation and Maintenance Disorders , Students , Humans , Sleep Initiation and Maintenance Disorders/therapy , Qigong/methods , Double-Blind Method , Universities , Young Adult , Quality of Life , Prospective Studies , Male , Adult , Female , Sleep Quality
8.
Environ Res ; 257: 119335, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849001

ABSTRACT

The reliance solely on the government or enterprises to promote climate governance is contingent upon the vested interests of economic entities and the regulatory bodies' efficiency in governance. Can the model of government-enterprise green collaborative governance evolve into a long-term mechanism for addressing the climate crisis and achieving the goals of sustainable development? By crawling data on public-private partnerships (PPP), employing ChatGPT to identify green PPP projects, and building a generalized difference-in-differences framework based on the Guidance on Building a Green Financial System issued in 2016, this present study investigates whether the involvement of private capital in government-led environmental and climate governance can effectively facilitate government-enterprise green collaborative governance, thereby mitigating urban carbon emissions. The study finds government-enterprise green collaborative governance can significantly reduce urban carbon emissions. The conclusion remains valid even after several rounds of robustness tests, including removing the influence of pertinent climate policies, adjusting the settings of independent and dependent variables, and removing self-selection issues. Heterogeneity tests show, on the first hand, the carbon emission reduction effect of government-enterprise green collaborative governance differs due to the differences in the characteristics of green PPP(Pubic-private partnership) projects such as project return mechanism, project investment volume, and project cooperation term; on the other hand, the carbon emission reduction effect also shows heterogeneity with various urban characteristics such as geographical location, city type and city size. Mechanism tests indicate government-enterprise green collaborative governance affects urban carbon emissions mainly through structural effects, technological effects and co-investment effects. This paper offers a valuable framework for effectively promoting environmental and climate co-governance between governmental bodies and enterprises, while enhancing the market's role in resource benefit allocation within climate governance to mitigate the risks associated with climate change.

9.
Phytomedicine ; 131: 155800, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851098

ABSTRACT

BACKGROUND: The incidence of gouty arthritis (GA) has gradually increased, and modern drug therapies have obvious side effects. Guizhi Shaoyao Zhimu Decoction (GSZD), a classic prescription in Traditional Chinese Medicine for treating various osteoarthritis, has shown significant advantages in curing GA. PURPOSE: To verify the therapeutic effect of GSZD on GA and investigate its potential pharmacological mechanism via integrated analysis of the gut microbiota and serum metabolites for the first time. METHODS: The chemical composition of GSZD was determined using UPLC-MS. The GA rat model was established by the induction of a high-purine diet combined with local injection. We examined the effects and mechanisms of GSZD after 21 d using enzyme-linked immunosorbent assays, 16S rRNA, and non-targeted metabolomics. Finally, correlation analysis and validation experiment were performed to explore the association among the gut microbiota, serum metabolites, and GA-related clinical indices. RESULTS: In total, 19 compounds were identified as GSZD. High-purine feedstuff with local injection-induced arthroceles were significantly attenuated after GSZD treatment. GSZD improved bone erosion and reduced the serum levels of inflammatory factors (lipopolysaccharide, tumor cell necrosis factor-α, and interleukin) and key indicators of GA (uric acid). 16S rRNA analysis indicated that GSZD-treated GA rats exhibited differences in the composition of the gut microbiota. The abundance of flora involved in uric acid transport, including Lactobacillus, Ruminococcaceae, and Turicibacter, was elevated to various degrees, whereas the abundance of bacteria involved in inflammatory responses, such as Blautia, was markedly reduced after treatment. Moreover, serum metabolite profiles revealed 27 different metabolites associated with the amelioration of GA, which primarily included fatty acids, glycerophospholipids, purine metabolism, amino acids, and bile acids, as well as primary metabolic pathways, such as glycerophospholipid metabolism and alanine. Finally, correlation analysis of the heat maps and validation experiment demonstrated a close relationship among inflammatory cytokines, gut microbial phylotypes, and metabolic parameters. CONCLUSION: This study demonstrated that GSZD could modulate the gut microbiota and serum metabolic homeostasis to treat GA. In addition, the application of gut microbiota and serum metabolomics correlation analyses sheds light on the mechanism of Traditional Chinese Medicine compounds in the treatment of bone diseases.


Subject(s)
Arthritis, Gouty , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Arthritis, Gouty/drug therapy , Male , Rats , Disease Models, Animal , Metabolome/drug effects , Uric Acid/blood
10.
Anal Chem ; 96(25): 10313-10321, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857194

ABSTRACT

Mechanical phenotyping has been widely employed for single-cell analysis over recent years. However, most previous works on characterizing the cellular mechanical properties measured only a single parameter from one image. In this paper, the quasi-real-time multiparameter analysis of cell mechanical properties was realized using high-throughput adjustable deformability cytometry. We first extracted 12 deformability parameters from the cell contours. Then, the machine learning for cell identification was performed to preliminarily verify the rationality of multiparameter mechanical phenotyping. The experiments on characterizing cells after cytoskeletal modification verified that multiple parameters extracted from the cell contours contributed to an identification accuracy of over 80%. Through continuous frame analysis of the cell deformation process, we found that temporal variation and an average level of parameters were correlated with cell type. To achieve quasi-real-time and high-precision multiplex-type cell detection, we constructed a back propagation (BP) neural network model to complete the fast identification of four cell lines. The multiparameter detection method based on time series achieved cell detection with an accuracy of over 90%. To solve the challenges of cell rarity and data lacking for clinical samples, based on the developed BP neural network model, the transfer learning method was used for the identification of three different clinical samples, and finally, a high identification accuracy of approximately 95% was achieved.


Subject(s)
Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Neural Networks, Computer , Microfluidic Analytical Techniques/instrumentation , Flow Cytometry/methods , Phenotype , High-Throughput Screening Assays/methods , Machine Learning , Lab-On-A-Chip Devices
11.
Sci Rep ; 14(1): 13373, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862547

ABSTRACT

Generally, the recognition performance of lightweight models is often lower than that of large models. Knowledge distillation, by teaching a student model using a teacher model, can further enhance the recognition accuracy of lightweight models. In this paper, we approach knowledge distillation from the perspective of intermediate feature-level knowledge distillation. We combine a cross-stage feature fusion symmetric framework, an attention mechanism to enhance the fused features, and a contrastive loss function for teacher and student models at the same stage to comprehensively implement a multistage feature fusion knowledge distillation method. This approach addresses the problem of significant differences in the intermediate feature distributions between teacher and student models, making it difficult to effectively learn implicit knowledge and thus improving the recognition accuracy of the student model. Compared to existing knowledge distillation methods, our method performs at a superior level. On the CIFAR100 dataset, it boosts the recognition accuracy of ResNet20 from 69.06% to 71.34%, and on the TinyImagenet dataset, it increases the recognition accuracy of ResNet18 from 66.54% to 68.03%, demonstrating the effectiveness and generalizability of our approach. Furthermore, there is room for further optimization of the overall distillation structure and feature extraction methods in this approach, which requires further research and exploration.

12.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838134

ABSTRACT

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Subject(s)
Bone and Bones , Insulin-Like Growth Factor II , Animals , Female , Humans , Male , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Bone and Bones/metabolism , Insulin-Like Growth Factor II/metabolism , Muscle, Skeletal/metabolism , Muscles/metabolism , Osteoclasts/metabolism , Osteogenesis , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830106

ABSTRACT

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Polyploidy , Chromosomes, Plant/genetics , Gene Duplication
14.
J Food Sci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922905

ABSTRACT

Mung bean sprouts are widely consumed as a seasonal fresh vegetable, renowned for their affordability and richness in antioxidants and bioactive compounds. This study employed ultra-high-performance liquid chromatogram-Q-Exactive HF mass spectrometry (UHPLC-QE-MS) and multivariate statistical analysis to comprehensively evaluate the chemical profile of mung bean sprouts following sulfite immersion. The findings revealed a significant alteration in the overall chemical composition of mung bean sprouts following sodium sulfite immersion. Eleven components, including four sulfur-containing compounds, were identified as characteristic markers distinguishing between non-immersed and sodium sulfite-immersed mung bean sprouts. Esterification and addition reactions were inferred to occur during sodium sulfite immersion, leading to the transformation of flavonoid and saponin sulfates. Commercial samples analysis indicated that sulfur-containing compounds were detectable in 9 of 11 commercial mung bean sprouts. Meanwhile, when sodium sulfite concentration exceeded 3.00 mg/mL and immersion time exceeded 360 min, the contents of total polyphenol and flavonoid were significantly reduced and the antioxidant activity was adversely influenced.

15.
Gene ; 927: 148697, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880186

ABSTRACT

Protocatechualdehyde is a plant natural phenolic aldehyde and an active ingredient with important bioactivities in traditional Chinese medicine. Protocatechualdehyde is also a key intermediate in the synthesis of Amaryllidaceae alkaloids for supplying the C6-C1 skeleton. However, the biosynthesis of protocatechualdehyde in plants remains obscure. In this study, we measured the protocatechualdehyde contents in the root, bulb, scape and flower of the Amaryllidaceae plant Lycoris aurea (L'Hér.) Herb., and performed the correlation analysis between the protocatechualdehyde contents and the transcriptional levels of the phenolic oxidization candidate protein encoding genes. We found that a novel ascorbate peroxidase encoded by the contig_24999 in the L. aurea transcriptome database had potential role in the biosynthesis of protocatechualdehyde. The LauAPX_24999 gene was then cloned from the cDNA of the scape of L. aurea. The transient expression of LauAPX_24999 protein in Arabidopsis protoplasts demonstrated that LauAPX_24999 protein was localized in the cytoplasm, thus belonging to Class II L-ascorbate peroxidase. Subsequently, LauAPX_24999 protein was heterogenously expressed in Escherichia coli, and identified that LauAPX_24999 biosynthesized protocatechualdehyde from p-hydroxybenzaldehyde using L-ascorbic acid as the electron donor. The protein structure modelling and molecular docking indicated that p-hydroxybenzaldehyde could access to the active pocket of LauAPX_24999 protein, and reside at the δ-edge of the heme group while L-ascorbic acid binds at the γ-heme edge. To our knowledge, LauAPX_24999 is the first enzyme discovered in plants able to biosynthesize protocatechualdehyde from p-hydroxybenzaldehyde, and offers a competent enzyme resource for the biosynthesis of Amaryllidaceae alkaloids via synthetic biology.

16.
Stem Cells Dev ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38814825

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a serious disease. There are no specific drugs for it, in part because of the lack of effective models to aid drug development. However, it has been shown that three-dimensional organoid culture systems can reproduce the organ structure and maintain the gene expression profile of the original tissue. Therefore, we aimed to construct NAFLD models from liver organoids for pharmacological and mechanism studies. We successfully observed morphological changes in normal liver tissue in mouse liver organoids with positive albumin (ALB) expression and potential for differentiation toward hepatocyte-like cells. The mRNA expression of the hepatocyte markers ALB and hepatocyte nuclear factor 4 alpha increased after liver organoid differentiation. We observed free fatty acid (FFA)-induced lipid accumulation in organoids with significant increases in alanine aminotransferase, aspartate aminotransferase, total bilirubin, and triglyceride levels. Moreover, FFA-induced inflammatory cytokines (interleukin-6, tumor necrosis factor-α, and nitric oxide) and fibrosis indicators (collagen type I α1 and laminin α1) were also increased. In addition, RNA sequencing results showed that the expression of key genes [nucleotide oligomerization domain-like receptor (NLR) family apoptosis inhibitory protein, interferon regulatory factor (IRF) 3, and IRF7] involved in NAFLD metabolic abnormalities and insulin resistance in the NLR signaling pathway was altered after FFA induction of the liver organoids. Finally, we found that JC2-11 and lanifibranor limited the FFA-induced increase in oil-red lipid droplets, liver damage, inflammation, and liver fibrosis. In conclusion, tissue structure, gene expression, and the response of mouse liver organoids to drugs can partially mimic in vivo liver tissue. Liver organoids can successfully construct NAFLD models for drug discovery research.

17.
Talanta ; 276: 126258, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776772

ABSTRACT

Pesticides are common pollutants that cause detriment to the ecological environmental safety and health of human due to their toxicity, volatility and bioaccumulation. In this work, an ultra-thin polymetallic layered double hydroxide (FeCoNi-LDH) with hollow nanoflower structure composite was synthesized using ZIF-67 as a self-sacrificial template, which was used as solid-phase microextraction (SPME) coating for the targeted capture pesticides, which could be combined with high-performance liquid chromatography (HPLC) to sensitive inspection pesticides in real water samples. Orthogonal experimental design (OAD) was applied to ensure the best SPME condition. Additionally, the adsorption properties were evaluated by chemical thermodynamics and kinetics. Under the optimized conditions, high adsorption capacity was obtained (117.0-21.5 mg g-1). A wide linear range (0.020-1000.0 µg L-1), low detection limit (0.008-0.172 µg L-1) and excellent reproducibility were obtained under the established method. This research provided a new strategy for designing hollow materials with multiple cations for the adsorption of anion or organic pollutants.

18.
Heliyon ; 10(9): e30505, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726194

ABSTRACT

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

19.
Am J Transl Res ; 16(4): 1062-1080, 2024.
Article in English | MEDLINE | ID: mdl-38715839

ABSTRACT

BACKGROUND: ETS1, a member of the large ETS domain family of transcription factors, plays a role in the progression of many types of carcinoma. ETS1 expression has been linked to a more favorable prognosis in renal cell carcinoma. The objective of this study was to assess the predictive significance of ETS1 in individuals suffering from clear cell renal cell carcinoma (ccRCC). METHODS: The correlation between ETS1 expression and ccRCC was analyzed. Data on ETS1 and clinical information for ccRCC patients were obtained from the Cancer Genome Atlas database and analyzed using R software. Then, we presented validation results using RT-qPCR (quantitative reverse transcription PCR). The receiver operator characteristic (ROC) curves were generated using the pROC software package to determine the cutoff values for ETS1. Additionally, the ImmuneScore, StromalScore, and ESTIMATEScore were calculated using the ESTIMATES algorithm. The connection between ccRCC and ETS1 was investigated using enrichment analysis based on Gene Oncology and the Kyoto Encyclopedia of Genes and Genomes. The tumor immunity estimation resource (TIMER) and the integrated repository portal for tumor-immune system interactions (TISIDB) databases were utilized to analyze the association between ETS1 expression and immune cell infiltration in ccRCC. The impact of ETS1 on the survival of ccRCC patients was evaluated using the PrognoScan database. We evaluated the Tumor Mutation Burden (TMB) value between the two sets of samples with high and low ETS1 expression, as well as the differences in gene mutations between the two groups. RESULTS: The mRNA expression of ETS1 in ccRCC was higher compared to normal tissues. Results showed a significant positive correlation between elevated ETS1 expression levels and improved overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS), with a P < 0.05. Furthermore, high ETS1 expression levels were closely linked to early tumor stage and prolonged survival time. TMB in the ETS1-high expression group was significantly less than that in the ETS1-low expression group. CONCLUSIONS: Downregulation of ETS1 expression correlated with poor prognosis and immune infiltration in ccRCC, further suggesting that ETS1 may be a biomarker for better prognosis in ccRCC patients.

20.
Article in English | MEDLINE | ID: mdl-38708920

ABSTRACT

BACKGROUND: Encountering a retained root tip post-extraction and prior to implant placement is a possible clinical complication. There are numerous approaches for removing retained roots that may be traumatic or atraumatic. Regardless of the approach, careful treatment planning is important to minimize complications, reduce morbidity, and preserve bony structures. The aim of the current case study is to introduce a technique and digitally generated device used for identifying and atraumatically removing a retained root tip and simultaneously placing a stable dental implant. METHODS: A 63-year-old female with a history of myocardial infarction, hypertension, and acute pancreatitis presented for implant placement at site #5. Clinical examination revealed adequate interocclusal, mesiodistal, and buccolingual dimensions for implant placement. Radiographic examination using cone beam computed tomography revealed that retained root #5 interfered with implant placement. Digital planning was used to extract the root tip with minimal trauma to maintain adequate bone for simultaneous implant placement with good primary stability. RESULTS: The follow-ups at 1, 3, and 6 weeks and 4, 8, and 10 months revealed good bone preservation with an osseointegrated implant. CONCLUSIONS: Employment of digital planning to create a palatal window allowed excellent accuracy in removing the retained root while maintaining the bony foundation for a well osseointegrated dental implant. KEY POINTS: Pre-planning using cone beam computed tomography scan merged with an intraoral digital scan is necessary for precise location of a retained root and correct implant placement with excellent primary stability. A digitally planned 3D surgical guide is a useful method for extracting retained roots during implant placement to minimize bone damage. Digital planning provides a precise and minimally invasive implant surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...