Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 974
Filter
1.
Transl Stroke Res ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940873

ABSTRACT

The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.

2.
Electromagn Biol Med ; : 1-12, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859623

ABSTRACT

Mild whole-body hyperthermia has been shown to have anti-tumor effects through an immune-modulating mechanism. Before it is widely applied in the clinic, tremendous mechanistic research in animals is necessary to adhere to evidence-based principles. The radio frequency electromagnetic field (RF-EMF) based heating facility could be a good choice for hyperthermia treatment, but the heating characteristics of a facility, including structure design, electromagnetic and thermal dosimetry, and the biologic effects of hyperthermia, need to be well elucidated. Here, we reported the heating characteristic study on a resonant chamber (RC) excited by a 1800 MHz solid source. The EMF in the RC was stirred by 24 static reflectors, which resulted in the standard deviation of electric field intensity being below 3 dB in the EM homogeneity evaluation. For the exposure scenario, six free-moving mice were loaded into separate cases and exposed simultaneously in the RC. The EMF energy absorption and distribution in exposed mice were calculated with the 12-plane-waves method of numerical simulation. Different levels of core body temperature increment in exposed mice were achieved through regulation of the source output power. Overexpression of heat shock proteins (HSPs) was detected in the liver, lung and muscle, but not in the brain of the exposed mice. The levels of representative inflammatory cytokines in the serum, TNF-α and IL-10 increased post RC exposure. Based on the heating characteristic study and validation, the applied RC would be a qualified heating system for mild whole-body hyperthermia effect research in mice.


Mild whole-body hyperthermia has potential anti-tumor effects by modulating the immune system. A radio frequency electromagnetic field (RF-EMF)-based heating facility emerges as a suitable option for hyperthermia treatment. However, a qualified heating facility for scientific research must elucidate its heating characteristics and validate the biological effects associated with hyperthermia. In this study, we report the characteristics of a rodent heating chamber using EMF energy. The special structure of the chamber not only achieved efficient EMF usage but also ensured the homogeneity in EMF spatial distribution, animal EM absorption, and EMF-caused biological effects. Our work may offer insights for designing a low-cost yet reliable heating facility for scientific research.

3.
Heliyon ; 10(10): e31511, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826741

ABSTRACT

Background: Ensuring the rapidity and accuracy of emergency laboratory test results is especially important to save the lives of patients with acute and critical conditions. To better meet the needs of clinicians and patients, detection efficiency can be improved by reducing extra-laboratory sample turnaround times (TATs) through the use of innovative pneumatic tube system (PTS) transport for sample transport. However, concerns remain regarding the potential compromise of sample quality during PTS transit relative to that occurring with manual transportation. This study was performed to evaluate the efficacy of an innovative PTS (Tempus600 PTS) relative to a traditional PTS in terms of sample transit time, sample quality, and the concordance of analytical results with those obtained from manually transported samples. Methods: In total, 30 healthy volunteers aged >18 years were recruited for this study, conducted for five consecutive days. Venous blood samples were collected from six volunteers per day at fixed timepoints. From each volunteer, nine blood samples were collected into tubes with tripotassium ethylene diamine tetraacetic acid anticoagulant, tubes with 3.2 % sodium citrate, and serum tubes with separation gel (n = 3 each) and subjected to all tests conducted in the emergency laboratory in our hospital. 270 blood samples from 30 healthy volunteers were transported and analyzed, yielding 6300 test results. The blood samples were divided randomly into three groups (each containing one tube of each type) and transported to the emergency laboratory manually and with Tempus600 PTS and conventional Swisslog PTS, respectively. The extra-laboratory TATs, sample quality, and test results of the transported blood samples were compared. Results: The sample quality and test results did not differ according to the delivery method. The TAT was much shorter with the Tempus600 than with the other two transport modes (58.40 ± 1.52 s vs. 1711.20 ± 77.56 s for manual delivery and 146.60 ± 1.82 s for the Swisslog PTS; P = 0.002). Conclusion: Blood sample transport with the Tempus600 PTS significantly reduced the extra-laboratory TAT without compromising sample quality or test result accuracy, thereby improving the efficiency of sample analysis and the services provided to clinicians and patients.

4.
Adv Sci (Weinh) ; : e2402030, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837686

ABSTRACT

Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aß deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.

6.
J Thromb Haemost ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908831

ABSTRACT

BACKGROUND: Thrombocytopenia is common for patients in the intensive care unit (ICU) and is associated with adverse outcomes. ICU thrombocytopenia in pediatric patients who underwent cardiac surgeries with cardiopulmonary bypass (CPB) is inadequately studied. OBJECTIVES: We aimed to investigate the incidence, risk factors, and prognostic role of ICU thrombocytopenia after congenital cardiac surgeries with CPB. METHODS: A retrospective study involving 11761 patients was conducted. Patients were categorized into four groups of thrombocytopenia based on platelet counts tested during ICU: non (> 150×109/L), mild (100-150×109/L), moderate (50-100×109/L), and severe (< 50×109/L). Logistic and Cox regression analyses were utilized to explore the risk factors of thrombocytopenia and the association of ICU thrombocytopenia with 30-day mortality. RESULTS: ICU thrombocytopenia was observed in 4007 patients (34.1%), with mild, moderate, and severe thrombocytopenia occurring in 2773 (23.6%), 987 (8.4%), and 247 (2.1%) patients, respectively. Younger age, cyanotic CHD, CPB duration, and preoperative laboratory findings (red blood cell, thrombocytopenia, red cell distribution width, hematocrit, coagulation disorder) were identified as independent risk factors of ICU thrombocytopenia. Patients with moderate [HR: 11.38 (3.02-42.87), p<0.001] and severe thrombocytopenia [HR: 49.54 (13.11-187.14), p<0.001] had a significantly higher risk of 30-day mortality. Furthermore, with the increase in the severity of ICU thrombocytopenia, there was an incremental increase in the incidence of postoperative critical bleeding and thrombosis, perioperative blood transfusions, length of ICU stays, and duration of mechanical ventilation. CONCLUSIONS: ICU thrombocytopenia occurred in one-third of children after congenital cardiac surgery with CPB, and it was associated with multiple adverse outcomes.

7.
Neurochem Res ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909329

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic strategy that shows promise in ameliorating the clinical sequelae following traumatic brain injury (TBI). These improvements are associated with neuroplastic changes in neurons and their synaptic connections. However, it has been hypothesized that rTMS may also modulate microglia and astrocytes, potentially potentiating their neuroprotective capabilities. This study aims to investigate the effects of high-frequency rTMS on microglia and astrocytes that may contribute to its neuroprotective effects. Feeney's weight-dropping method was used to establish rat models of moderate TBI. To evaluate the neuroprotective effect of high frequency rTMS on rats by observing the synaptic ultrastructure and the level of neuron apoptosis. The levels of several important inflammation-related proteins within microglia and astrocytes were assessed through immunofluorescence staining and western blot. Our findings demonstrate that injured neurons can be rescued through the modulation of microglia and astrocytes by rTMS. This modulation plays a key role in preserving the synaptic ultrastructure and inhibiting neuronal apoptosis. Among microglia, we observed that rTMS inhibited the levels of proinflammatory factors (CD16, IL-6 and TNF-α) and promoted the levels of anti-inflammatory factors (CD206, IL-10 and TNF-ß). rTMS also reduced the levels of pyroptosis within microglia and pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, IL-1ß and IL-18). Moreover, rTMS downregulated P75NTR expression and up-regulated IL33 expression in astrocytes. These findings suggest that regulation of microglia and astrocytes is the mechanism through which rTMS attenuates neuronal inflammatory damage after moderate TBI.

8.
J Inflamm Res ; 17: 3685-3695, 2024.
Article in English | MEDLINE | ID: mdl-38882187

ABSTRACT

Introduction: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by chronic abdominal pain and alterations in bowel habits. Despite the importance of biomarkers in disease management, the quest for precise and non-invasive biomarkers for IBS continues. Methods: This study focuses on investigating the clinical significance of the neutrophil-to-albumin ratio (NAR) as a potential biomarker in IBS. A cohort of 86 patients diagnosed with diarrhea-predominant IBS (IBS-D) and 106 healthy individuals were assessed for clinical symptoms, quality of life (QOL), psychological status, as well as serum and mucosal cytokine production. Results: Our findings revealed that NAR levels were notably elevated in patients with IBS-D compared to healthy controls. Positive correlations were observed between NAR levels and IBS clinical symptoms, while negative correlations were noted with QOL. Additionally, NAR showed positive associations with anxiety and depression scores, along with significant relationships with cytokine production (serum IL-6, TNF-α, IL-1ß, IL-17A, GM-CSF, IFN-γ, MCP-1; mucosal IL-6, TNF-α, IL-1ß, IL-17A) in IBS-D. Interestingly, patients with lower baseline NAR levels demonstrated potentially better clinical outcomes. Conclusion: The study underscores the potential utility of NAR as a novel biomarker in IBS, emphasizing its role in enhancing disease monitoring, understanding disease pathophysiology, and tailoring treatment strategies for patients with IBS-D.

9.
Small ; : e2402748, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898734

ABSTRACT

Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.

10.
Thromb J ; 22(1): 55, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937784

ABSTRACT

BACKGROUND: In recent years, extracorporeal membrane oxygenation (ECMO) has been increasingly used in critically ill patients with respiratory or cardiac failure. Heparin is usually used as anticoagulation therapy during ECMO support. However, heparin-induced thrombocytopenia (HIT) in ECMO-supported patients, which results in considerable morbidity and mortality, has not yet been well described. This meta-analysis and systematic review aimed to thoroughly report the incidence of HIT on ECMO, as well as the characteristics and outcomes of HIT patients. METHODS: We searched the PubMed, Embase, Cochrane Library, and Scopus databases for studies investigating HIT in adult patients supported by ECMO. All studies conforming to the inclusion criteria were screened from 1975 to August 2023. Nineteen studies from a total of 1,625 abstracts were selected. The primary outcomes were the incidence of HIT and suspected HIT. RESULTS: The pooled incidence of HIT in ECMO-supported patients was 4.2% (95% CI: 2.7-5.6; 18 studies). A total of 15.9% (95% CI: 9.0-22.8; 12 studies) of patients on ECMO were suspected of having HIT. Enzyme-linked immunosorbent assay (ELISA) is the most commonly used immunoassay. The median optical density (OD) of the ELISA in HIT-confirmed patients ranged from 1.08 to 2.10. In most studies, the serotonin release assay (SRA) was performed as a HIT-confirming test. According to the subgroup analysis, the pooled incidence of HIT in ECMO patients was 2.7% in studies whose diagnostic mode was functional assays, which is significantly lower than the incidence in studies in which the patients were diagnosed by immunoassay (14.5%). Argatroban was most commonly used as an alternative anticoagulation agent after the withdrawal of heparin. Among confirmed HIT patients, 45.5% (95% CI: 28.8-62.6) experienced thrombotic events, while 50.1% (95% CI: 24.9-75.4) experienced bleeding events. Overall, 46.6% (95% CI: 30.4-63.1) of patients on ECMO with HIT died. CONCLUSION: According to our study, the pooled incidence of HIT in ECMO-supported patients is 4.2%, and it contributes to adverse outcomes. Inappropriate diagnostic methods can easily lead to misdiagnosis of HIT. Further research and development of diagnostic algorithms and laboratory assays are warranted.

11.
Arterioscler Thromb Vasc Biol ; 44(7): 1628-1645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38813696

ABSTRACT

BACKGROUND: Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS: We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS: Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS: We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.


Subject(s)
Adipose Tissue , Coronary Artery Disease , Pericardium , Transcriptome , Humans , Pericardium/metabolism , Pericardium/pathology , Female , Male , Middle Aged , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Coronary Artery Disease/metabolism , Aged , Adipose Tissue/metabolism , Adipose Tissue/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Adipocytes/metabolism , Adipocytes/pathology , Heart Valve Diseases/genetics , Heart Valve Diseases/pathology , Heart Valve Diseases/metabolism , Heart Valve Diseases/surgery , Gene Expression Profiling/methods , Case-Control Studies , Coronary Artery Bypass , Single-Cell Analysis , Macrophages/metabolism , Macrophages/pathology , Gene Regulatory Networks , Epicardial Adipose Tissue
12.
Front Neurol ; 15: 1366306, 2024.
Article in English | MEDLINE | ID: mdl-38817542

ABSTRACT

Objective: Our aim was to develop a nomogram that integrates clinical and radiological data obtained from computed tomography (CT) scans, enabling the prediction of chronic hydrocephalus in patients with aneurysmal subarachnoid hemorrhage (aSAH). Method: A total of 318 patients diagnosed with subarachnoid hemorrhage (SAH) and admitted to the Department of Neurosurgery at the Affiliated People's Hospital of Jiangsu University between January 2020 and December 2022 were enrolled in our study. We collected clinical characteristics from the hospital's medical record system. To identify risk factors associated with chronic hydrocephalus, we conducted both univariate and LASSO regression models on these clinical characteristics and radiological features, accompanied with penalty parameter adjustments conducted through tenfold cross-validation. All features were then incorporated into multivariate logistic regression analyses. Based on these findings, we developed a clinical-radiological nomogram. To evaluate its discrimination performance, we conducted Receiver Operating Characteristic (ROC) curve analysis and calculated the Area Under the Curve (AUC). Additionally, we employed calibration curves, and utilized Brier scores as an indicator of concordance. Additionally, Decision Curve Analysis (DCA) was performed to determine the clinical utility of our models by estimating net benefits at various threshold probabilities for both training and testing groups. Results: The study included 181 patients, with a determined chronic hydrocephalus prevalence of 17.7%. Univariate logistic regression analysis identified 11 potential risk factors, while LASSO regression identified 7 significant risk factors associated with chronic hydrocephalus. Multivariate logistic regression analysis revealed three independent predictors for chronic hydrocephalus following aSAH: Periventricular white matter changes, External lumbar drainage, and Modified Fisher Grade. A nomogram incorporating these factors accurately predicted the risk of chronic hydrocephalus in both the training and testing cohorts. The AUC values were calculated as 0.810 and 0.811 for each cohort respectively, indicating good discriminative ability of the nomogram model. Calibration curves along with Hosmer-Lemeshow tests demonstrated excellent agreement between predicted probabilities and observed outcomes in both cohorts. Furthermore, Brier scores (0.127 for the training and 0.09 for testing groups) further validated the predictive performance of our nomogram model. The DCA confirmed that this nomogram provides superior net benefit across various risk thresholds when predicting chronic hydrocephalus. The decision curve demonstrated that when an individual's threshold probability ranged from 5 to 62%, this model is more effective in predicting the occurrence of chronic hydrocephalus after aSAH. Conclusion: A clinical-radiological nomogram was developed to combine clinical characteristics and radiological features from CT scans, aiming to enhance the accuracy of predicting chronic hydrocephalus in patients with aSAH. This innovative nomogram shows promising potential in assisting clinicians to create personalized and optimal treatment plans by providing precise predictions of chronic hydrocephalus among aSAH patients.

13.
J Int Med Res ; 52(5): 3000605241255568, 2024 May.
Article in English | MEDLINE | ID: mdl-38819085

ABSTRACT

OBJECTIVE: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently used in clinical microbiology laboratories. This study aimed to determine whether dual-polarity time-of-flight mass spectrometry (DP-TOF MS) could be applied to clinical nucleotide detection. METHODS: This prospective study included 40 healthy individuals and 110 patients diagnosed with cardiovascular diseases. We used DP-TOF MS and Sanger sequencing to evaluate 17 loci across 11 genes associated with cardiovascular drug responses. In addition, we used DP-TOF MS to test 998 retrospectively collected clinical DNA samples with known results. RESULTS: A, T, and G nucleotide detection by DP-TOF MS and Sanger sequencing revealed 100% concordance, whereas the C nucleotide concordance was 99.86%. Genotyping based on the results of the two methods showed 99.96% concordance. Regarding clinical applications, DP-TOF MS yielded a 99.91% concordance rate for known loci. The minimum detection limit for DNA was 0.4 ng; the inter-assay and intra-assay precision rates were both 100%. Anti-interference analysis showed that aerosol contamination greater than 1013 copies/µL in the laboratory environment could influence the results of DP-TOF MS. CONCLUSIONS: The DP-TOF MS platform displayed good detection performance, as demonstrated by its 99.96% concordance rate with Sanger sequencing. Thus, it may be applied to clinical nucleotide detection.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Male , Prospective Studies , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Middle Aged , Adult , Aged , Sequence Analysis, DNA/methods , DNA/genetics , DNA/analysis , Retrospective Studies , Case-Control Studies , Polymorphism, Single Nucleotide
14.
Int Heart J ; 65(3): 537-547, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38749744

ABSTRACT

Cardiomyocyte lipotoxicity and ferroptosis are the key to the development of diabetic cardiomyopathy (DCM). Perilipin 5 (PLIN5) is perceived as a significant target of DCM. This study aimed to focus on the role and mechanism of PLIN5 on lipotoxicity and ferroptosis in DCM.Following transfection, mouse cardiomyocytes HL-1 were induced by 0.1 mM palmitic acid (PA) to set up lipotoxic cardiomyocyte models. The cell viability and lipid accumulation were evaluated by cell counting kit-8 assay and Oil red O staining, respectively. Ferrous ion (Fe2+), glutathione (GSH), malondialdehyde (MDA), and reactive oxygen species (ROS) levels were determined to verify the effects of PLIN5 or Pirin (PIR) on ferroptosis. Quantitative real-time reverse transcription polymerase chain reaction or Western blot was performed for quantitative analysis.PLIN5 overexpression promoted the viability, GSH level, and expression of GPX4/PIR/intracellular P65, yet suppressed lipid accumulation, level of Fe2+/MDA/ROS, and expression of interleukin (IL)-1ß/IL-18/intranuclear P65 in PA-stimulated HL-1 cells. PIR silencing counteracted the roles of PLIN5 overexpression in PA-stimulated HL-1 cells.PLIN5 suppresses lipotoxicity and ferroptosis in cardiomyocyte via modulating PIR/NF-κB axis, hinting its potential as a therapeutic target in DCM.


Subject(s)
Diabetic Cardiomyopathies , Ferroptosis , Myocytes, Cardiac , NF-kappa B , Perilipin-5 , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Perilipin-5/metabolism , Diabetic Cardiomyopathies/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Cell Survival , Palmitic Acid/pharmacology , Signal Transduction
15.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750743

ABSTRACT

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Subject(s)
Kinesins , Melatonin , Mesencephalon , Mice, Inbred C57BL , Mitochondria , Paraquat , Paraquat/toxicity , Animals , Melatonin/pharmacology , Mice , Mesencephalon/drug effects , Mesencephalon/metabolism , Kinesins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Herbicides/toxicity , Neurons/drug effects , Dopaminergic Neurons/drug effects , Axonal Transport/drug effects
16.
Ecotoxicol Environ Saf ; 278: 116411, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714085

ABSTRACT

Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.


Subject(s)
Cadmium , Gene Expression Profiling , Medicago sativa , Melatonin , Medicago sativa/drug effects , Medicago sativa/genetics , Cadmium/toxicity , Melatonin/pharmacology , Gene Expression Regulation, Plant/drug effects , Transcriptome/drug effects , Plant Roots/drug effects , Plant Roots/genetics , Soil Pollutants/toxicity , Stress, Physiological/drug effects
17.
Int J Biol Macromol ; 271(Pt 2): 132717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815940

ABSTRACT

The efficacy of nanoencapsulation as a technology for enhancing the solubility of active substances has been demonstrated. In this particular investigation, Ganoderic acid DM (GA-DM) was encapsulated within sodium alginate nanoparticles (NPs) using the ionic crosslinking method. The confirmation of the successful loading of GA-DM was ascertained through the analysis of Fourier transform infrared spectrum (FTIR). Empirical evidence derived from the examination of scanning electron microscope (SEM) images, transmission electron microscope (TEM) images, atomic force microscope (AFM) images, and dynamic light scattering (DLS) demonstrated a regular distribution and spherical morphology, with an average particle size of approximately 133 nm. The investigation yielded an encapsulation efficiency of 95.27 ± 0.11 % and a drug loading efficiency of 21.17 ± 0.02 % for the prepared sample. The release kinetics of SGPN was fitted with the Korsmeyer-Peppas kinetic model corresponding to diffusion-controlled release. The incorporation of GA-DM into sodium alginate nanocarriers exhibited a mitigating effect on the cytotoxicity of HaCat and B16, while also demonstrating inhibitory properties against tyrosinase activity and melanin formation.


Subject(s)
Alginates , Melanins , Monophenol Monooxygenase , Nanoparticles , Triterpenes , Alginates/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Nanoparticles/chemistry , Humans , Triterpenes/chemistry , Triterpenes/pharmacology , Particle Size , Drug Liberation , Animals , Mice , Drug Carriers/chemistry , Kinetics , Drug Compounding , Spectroscopy, Fourier Transform Infrared
18.
J Control Release ; 370: 152-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641020

ABSTRACT

Ligand-modified nanocarriers can promote oral or inhalative administration of macromolecular drugs across the intestinal or pulmonary mucosa. However, enhancing the unidirectional transport of the nanocarriers through "apical uptake→intracellular transport→basolateral exocytosis" route remains a hot topic and challenge in current research. Forskolin is a naturally occurring diterpenoid compound extracted from the roots of C. forskohlii. In our studies, we found that forskolin could increase the transcellular transport of butyrate-modified nanoparticles by 1.67-fold and 1.20-fold in Caco-2 intestinal epithelial cell models and Calu-3 lung epithelial cell models, respectively. Further mechanistic studies revealed that forskolin, on the one hand, promoted the cellular uptake of butyrate-modified nanoparticles by upregulating the expression of monocarboxylic acid transporter-1 (MCT-1) on the apical membrane. On the other hand, forskolin facilitated the binding of MCT-1 to caveolae, thereby mediating butyrate-modified nanoparticles hijacking caveolae to promote the basolateral exocytosis of butyrate-modified nanoparticles. Studies in normal mice model showed that forskolin could promote the transmucosal absorption of butyrate-modified nanoparticles by >2-fold, regardless of oral or inhalative administration. Using semaglutide as the model drug, both oral and inhalation delivery approaches demonstrated significant hypoglycemic effects in type 2 diabetes mice model, in which inhalative administration was more effective than oral administration. This study optimized the strategies aimed at enhancing the transmucosal absorption of ligand-modified nanocarriers in the intestinal or pulmonary mucosa.


Subject(s)
Colforsin , Nanoparticles , Animals , Humans , Colforsin/administration & dosage , Administration, Oral , Nanoparticles/administration & dosage , Lung/metabolism , Butyrates/administration & dosage , Butyrates/pharmacokinetics , Monocarboxylic Acid Transporters/metabolism , Caco-2 Cells , Male , Symporters/metabolism , Mice , Administration, Inhalation , Drug Delivery Systems
19.
Mater Struct ; 57(4): 56, 2024.
Article in English | MEDLINE | ID: mdl-38601013

ABSTRACT

The steel-concrete interface (SCI) is known to play a major role in corrosion of steel in concrete, but a fundamental understanding is still lacking. One reason is that concrete's opacity complicates the study of internal processes. Here, we report on the application of bimodal X-ray and neutron microtomography as in-situ imaging techniques to elucidate the mechanism of steel corrosion in concrete. The study demonstrates that the segmentation of the specimen components of relevance-steel, cementitious matrix, aggregates, voids, corrosion products-obtained through bimodal X-ray and neutron imaging is more reliable than that based on the results of each of the two techniques separately. Further, we suggest the combination of tomographic in-situ imaging with ex-situ SEM analysis of targeted sections, selected based on the segmented tomograms. These in-situ and ex-situ characterization techniques were applied to study localized corrosion in a very early stage under laboratory chloride-exposure conditions, using reinforced concrete cores retrieved from a concrete bridge. Several interesting observations were made. First, the acquired images revealed the formation of several corrosion sites close to each other. Second, the morphology of the corrosion pits was relatively shallow. Finally, only about half of the total 31 corrosion initiation spots were in close proximity to interfacial macroscopic air voids, and > 90% of the more than 160 interfacial macroscopic air voids were free from corrosion. The findings have implications for the mechanistic understanding of corrosion of steel in concrete and suggest that multimodal in-situ imaging is a valuable technique for further related studies. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-024-02337-7.

20.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563351

ABSTRACT

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Subject(s)
Sulfhydryl Compounds , Thioctic Acid , Thioctic Acid/chemistry , Animals , Sulfhydryl Compounds/chemistry , Administration, Oral , Rats , Humans , Nanoparticles/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Drug Delivery Systems , Male , Inflammation/drug therapy , Mice , Surface Properties , Drug Carriers/chemistry , Insulin/metabolism , Rats, Sprague-Dawley , Particle Size , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...