Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Gen Physiol Biophys ; 37(2): 193-204, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29593125

ABSTRACT

The current study investigated the effect of upregulation of heme oxygenase 1 (HO-1) by cobalt protoporphyrin (CoPP) on renal dysfunctions in renal ischemia/reperfusion (I/R) injury and its underlying mechanisms. 72 male Sprague Dawley rats were divided into 4 groups: sham group, ischemic group (left 45-min renal ischemia), CoPP-before group (as ischemic group with CoPP 20 mg/kg 30 min before ischemia) and CoPP-after group (as ischemic group with CoPP 20 mg/kg 20 min after ischemia). Serum creatinine, urea and TGF-ß1 and markers of redox state (MDA, SOD, GSH and CAT), nitric oxide (NO), TGF-ß1 and HO-1 in kidney tissues were measured. Serum creatinine and urea levels were significantly increased in ischemic group and attenuated in CoPP-treated groups (p < 0.05). Also, markers of redox state showed significant deteriorations in ischemic group which were improved significantly in CoPP-treated groups (p < 0.05). HO-1 expression in kidney tissues showed significant increase in ischemic group and showed more significant increase in CoPP-treated groups (p < 0.05). Moreover, serum and renal TGF-ß1 levels were significantly increased in ischemic group and attenuated in CoPP-treated groups (p ≶ 0.05). We concluded that up-regulation of HO-1 by CoPP treatment before and after renal I/R injury improved the kidney function and morphology and this might be due to impairment of oxidative stress and inflammatory cytokines in kidney tissues.


Subject(s)
Heme Oxygenase-1/biosynthesis , Inflammation/metabolism , Kidney Diseases/metabolism , Oxidative Stress/physiology , Reperfusion Injury/metabolism , Animals , Male , Oxidative Stress/drug effects , Protoporphyrins/pharmacology , Random Allocation , Rats , Rats, Sprague-Dawley , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL