Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Braz. j. biol ; 82: e250700, 2022.
Article in English | LILACS, VETINDEX | ID: biblio-1278476

ABSTRACT

The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Mutações são alterações genéticas nas sequências do genoma e têm papel significativo na biotecnologia, genética e biologia molecular, até mesmo para descobrir as sequências do genoma de um DNA celular junto com o sequenciamento do RNA viral. As mutações são alterações no DNA que podem ser naturais ou espontâneas e induzidas devido a reações bioquímicas ou radiações que danificam o DNA celular. Há outra causa de mutações, conhecida como transposons ou genes saltadores, que podem mudar sua posição no genoma durante a meiose ou a replicação do DNA. Os elementos transponíveis podem induzir por si próprios no genoma devido a mecanismos celulares e moleculares, incluindo hipermutação que causou a localização dos elementos transponíveis para se moverem dentro do genoma. O uso de mutações induzidas para estudar a mutagênese em plantas cultivadas é muito comum, bem como um método promissor para a triagem de plantas cultivadas com características novas e aprimoradas para a melhoria da produtividade e da produção. A utilização de mutações de inserção por meio de transposons ou genes saltadores geralmente gera alelos mutantes estáveis que são marcados quanto à presença ou ausência de genes saltadores ou elementos transponíveis. Os elementos transponíveis podem ser usados para a identificação de genes mutados em plantas de cultivo e até mesmo para a inserção estável de elementos transponíveis em plantas de cultivo mutadas. As proteínas de ligação ao nucleotídeo guanina (GTP) têm papel importante na indução de tolerância em plantas de arroz para combater as condições de estresse abiótico.


Subject(s)
Oryza/genetics , Phenotype , DNA Transposable Elements/genetics , Gene Expression , Guanosine Triphosphate
2.
Braz. j. biol ; 82: 1-24, 2022.
Article in English | LILACS, VETINDEX | ID: biblio-1468567

ABSTRACT

The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Mutações são alterações genéticas nas sequências do genoma e têm papel significativo na biotecnologia, genética e biologia molecular, até mesmo para descobrir as sequências do genoma de um DNA celular junto com o sequenciamento do RNA viral. As mutações são alterações no DNA que podem ser naturais ou espontâneas e induzidas devido a reações bioquímicas ou radiações que danificam o DNA celular. Há outra causa de mutações, conhecida como transposons ou genes saltadores, que podem mudar sua posição no genoma durante a meiose ou a replicação do DNA. Os elementos transponíveis podem induzir por si próprios no genoma devido a mecanismos celulares e moleculares, incluindo hipermutação que causou a localização dos elementos transponíveis para se moverem dentro do genoma. O uso de mutações induzidas para estudar a mutagênese em plantas cultivadas é muito comum, bem como um método promissor para a triagem de plantas cultivadas com características novas e aprimoradas para a melhoria da produtividade e da produção. A utilização de mutações de inserção por meio de transposons ou genes saltadores geralmente gera alelos mutantes estáveis que são marcados quanto à presença ou ausência de genes saltadores ou elementos transponíveis. Os elementos transponíveis podem ser usados para a identificação de genes mutados em plantas de cultivo e até mesmo para a inserção estável de elementos transponíveis em plantas de cultivo mutadas. As proteínas de ligação ao nucleotídeo guanina (GTP) têm papel importante na indução de tolerância em plantas de arroz para combater as condições de estresse abiótico.


Subject(s)
DNA Transposable Elements/genetics , Mutation/genetics , Guanine Nucleotides/analysis , Oryza/genetics
3.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468754

ABSTRACT

Abstract The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Resumo Mutações são alterações genéticas nas sequências do genoma e têm papel significativo na biotecnologia, genética e biologia molecular, até mesmo para descobrir as sequências do genoma de um DNA celular junto com o sequenciamento do RNA viral. As mutações são alterações no DNA que podem ser naturais ou espontâneas e induzidas devido a reações bioquímicas ou radiações que danificam o DNA celular. Há outra causa de mutações, conhecida como transposons ou genes saltadores, que podem mudar sua posição no genoma durante a meiose ou a replicação do DNA. Os elementos transponíveis podem induzir por si próprios no genoma devido a mecanismos celulares e moleculares, incluindo hipermutação que causou a localização dos elementos transponíveis para se moverem dentro do genoma. O uso de mutações induzidas para estudar a mutagênese em plantas cultivadas é muito comum, bem como um método promissor para a triagem de plantas cultivadas com características novas e aprimoradas para a melhoria da produtividade e da produção. A utilização de mutações de inserção por meio de transposons ou genes saltadores geralmente gera alelos mutantes estáveis que são marcados quanto à presença ou ausência de genes saltadores ou elementos transponíveis. Os elementos transponíveis podem ser usados para a identificação de genes mutados em plantas de cultivo e até mesmo para a inserção estável de elementos transponíveis em plantas de cultivo mutadas. As proteínas de ligação ao nucleotídeo guanina (GTP) têm papel importante na indução de tolerância em plantas de arroz para combater as condições de estresse abiótico.

4.
Braz. J. Biol. ; 82: 1-24, 2022.
Article in English | VETINDEX | ID: vti-31888

ABSTRACT

The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.(AU)


Mutações são alterações genéticas nas sequências do genoma e têm papel significativo na biotecnologia, genética e biologia molecular, até mesmo para descobrir as sequências do genoma de um DNA celular junto com o sequenciamento do RNA viral. As mutações são alterações no DNA que podem ser naturais ou espontâneas e induzidas devido a reações bioquímicas ou radiações que danificam o DNA celular. Há outra causa de mutações, conhecida como transposons ou genes saltadores, que podem mudar sua posição no genoma durante a meiose ou a replicação do DNA. Os elementos transponíveis podem induzir por si próprios no genoma devido a mecanismos celulares e moleculares, incluindo hipermutação que causou a localização dos elementos transponíveis para se moverem dentro do genoma. O uso de mutações induzidas para estudar a mutagênese em plantas cultivadas é muito comum, bem como um método promissor para a triagem de plantas cultivadas com características novas e aprimoradas para a melhoria da produtividade e da produção. A utilização de mutações de inserção por meio de transposons ou genes saltadores geralmente gera alelos mutantes estáveis que são marcados quanto à presença ou ausência de genes saltadores ou elementos transponíveis. Os elementos transponíveis podem ser usados para a identificação de genes mutados em plantas de cultivo e até mesmo para a inserção estável de elementos transponíveis em plantas de cultivo mutadas. As proteínas de ligação ao nucleotídeo guanina (GTP) têm papel importante na indução de tolerância em plantas de arroz para combater as condições de estresse abiótico.(AU)


Subject(s)
DNA Transposable Elements/genetics , Mutation/genetics , Oryza/genetics , Guanine Nucleotides/analysis
5.
Braz. j. biol ; Braz. j. biol;81(3): 684-691, July-Sept. 2021. graf
Article in English | LILACS | ID: biblio-1153408

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, "bending roots." The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the "bending root," which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de "raízes dobradas". A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a "raiz dobrada", relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.


Subject(s)
Triticum , Hydrogen Peroxide , Ultraviolet Rays , Actin Cytoskeleton , Plant Roots
6.
Braz. J. Biol. ; 81(3): 684-691, July-Sept. 2021. ilus, tab
Article in English | VETINDEX | ID: vti-762655

ABSTRACT

Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, bending roots. The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the bending root, which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.(AU)


As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de raízes dobradas. A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a raiz dobrada, relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.(AU)


Subject(s)
Triticum/radiation effects , Plant Roots/radiation effects , Actins , Ultraviolet Rays/adverse effects
7.
Braz J Biol ; 82: e250700, 2021.
Article in English | MEDLINE | ID: mdl-34259718

ABSTRACT

The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Subject(s)
Oryza , DNA Transposable Elements/genetics , Gene Expression , Guanosine Triphosphate , Oryza/genetics , Phenotype
8.
Braz J Biol ; 81(3): 684-691, 2021.
Article in English | MEDLINE | ID: mdl-32935819

ABSTRACT

Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, "bending roots." The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the "bending root," which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Subject(s)
Hydrogen Peroxide , Triticum , Actin Cytoskeleton , Plant Roots , Ultraviolet Rays
9.
Article in English | VETINDEX | ID: vti-759333

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, bending roots. The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the bending root, which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de raízes dobradas. A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a raiz dobrada, relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.

10.
Clin Transl Oncol ; 21(6): 781-789, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30515646

ABSTRACT

BACKGROUND: Worsening voice and speech quality was frequently reported in head-and-neck patients after radiotherapy to the neck; omitting the lower neck and sparing the glottic larynx in node-negative nasopharyngeal carcinoma (NPC) patients might be safe and feasible, and improve voice and speech outcomes. METHODS: From January 2009 to January 2013, 71 patients were analyzed. All patients received bilateral neck irradiation. Upper group (UG) patients spared the glottic larynx while lower group (LG) patients did not. Voice and speech quality were evaluated at two time-points (T1 and T2) using the Communication Domain of the Head and Neck Quality of Life (HNQOL) instrument and the Speech question of the University of Washington Quality of Life instrument. RESULTS: At a median follow-up time of 32 months (T1),71.6% of patients reported worsened voice and speech quality. UG patients resulted in significant decreases in glottic larynx dose. With a median follow-up time of 71 months (T2), no patients experienced out-of-field nodal recurrence;there was no difference in the 5-year overall survival and nodal recurrence-free survival between two groups (P = 0.235 and 0.750, respectively). At T1, in patients who without concurrent chemotherapy (CCT), UG patients showed significantly better patient-reported voice quality, (P = 0.022). UG patients without CCT also showed higher scores in the HNQOL communication domain and pain domain (P = 0.012 and P = 0.019). CONCLUSIONS: For node-negative NPC patients, omitting the lower neck and sparing the glottic larynx was safe and feasible, and better voice outcomes were achieved in patients without CCT. Further prospective longitudinal studies to investigate whether this approach would be beneficial to node-negative patients are warranted.


Subject(s)
Chemoradiotherapy/adverse effects , Glottis , Nasopharyngeal Neoplasms/therapy , Neck , Organ Sparing Treatments/mortality , Quality of Life , Voice Disorders/prevention & control , Adolescent , Adult , Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Lymph Nodes/pathology , Male , Middle Aged , Nasopharyngeal Neoplasms/pathology , Patient Reported Outcome Measures , Prognosis , Survival Rate , Voice Disorders/etiology , Voice Quality , Young Adult
11.
Genet Mol Res ; 16(2)2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28671252

ABSTRACT

Glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1, and NAGA) play an important regulatory role in the defense against Escherichia coli F18 in piglets. In this study, we identified the transcription initiation site and promoter of this gene cluster by mined previous RNA-seq results using bioinformatics tools. The FUT1 transcription initiation region included five alternative splicing sites and two promoter regions, whereas each of the six other genes had one promoter. Dual luciferase reporter results revealed significantly higher transcriptional activity by FUT1 promoter 2, indicating that it played a more important role in transcription. The promoters of glycosphingolipid biosynthesis genes identified contained a CpG island within the first 500 bp, except for the B3GALNT1 promoter which included fewer CpG sites. These results provide a deeper insight into methylation and the regulatory mechanisms of glycosphingolipid biosynthesis-globo series pathway genes in piglets.


Subject(s)
Fucosyltransferases/genetics , Glycosphingolipids/biosynthesis , Promoter Regions, Genetic , Swine/genetics , Animals , CpG Islands , DNA Methylation , Fucosyltransferases/metabolism , Transcriptional Activation , Galactoside 2-alpha-L-fucosyltransferase
12.
Braz. j. biol ; Braz. j. biol;2017.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467474

ABSTRACT

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, bending roots. The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the bending root, which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


Resumo As plantas ajustam o crescimento da parte aérea para se adaptarem a fatores ambientais variáveis, como o aumento da radiação ultravioleta B (UVB). No entanto, as pessoas ignoram que as raízes das plantas também podem responder à luz UVB. Neste estudo, verificamos a morfologia das raízes enroladas de trigo sob radiação UVB, o que chamamos de raízes dobradas. A região encaracolada é a zona de transição da raiz no nível celular. Depois de exposição à radiação UVB aprimorada por 2 dias (10,08 KJ/m2/d), o tamanho das células diminuiu, e os filamentos de actina se reuniram. Também constatamos que a produção de H2O2 aumentou e que o conteúdo do ácido indol-3-acético (IAA) aumentou notavelmente. O experimento farmacológico revelou que os filamentos de actina se reuniram e polimerizaram em feixes nas células da raiz de trigo após irrigação com H2O2 e IAA. Esses resultados indicam que os filamentos de actina alteraram sua distribuição e formaram a raiz dobrada, relacionada à produção de H2O2 e ao aumento do IAA. No geral, os filamentos de actina nas células da raiz de trigo podem ser um alvo subcelular da radiação UVB, e sua interrupção determina a morfologia da raiz.

13.
Genet Mol Res ; 15(2)2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27420981

ABSTRACT

Biologists and scientists can use the data from Alzheimer's disease (AD) gene expression microarrays to mine AD disease-related genes. Because of disadvantages such as small sample sizes, high dimensionality, and a high level of noise, it is difficult to obtain accurate and meaningful biological information from gene expression profiles. In this paper, we present a novel approach for utilizing AD microarray data to identify the morbigenous genes. The Fisher score, a classical feature selection method, is utilized to evaluate the importance of each gene. Genes with a large between-classes variance and small within-class variance are selected as candidate morbigenous genes. The results using an AD dataset show that the proposed approach is effective for gene selection. Satisfactory accuracy can be achieved by using only a small number of selected genes.


Subject(s)
Algorithms , Alzheimer Disease/genetics , Models, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Humans
14.
West Indian Med J ; 65(2): 379-382, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26716803

ABSTRACT

OBJECTIVE: Sensorineural hearing loss (SNHL) is caused by damage to hair cells followed by degeneration of the spiral ganglion neurons (SGNs), and cochlear implanting is an effective treatment. Unfortunately, the progressive hearing loss is still found due to ongoing degeneration of cochlear SGNs. The aim of this study was to investigate the neuroprotective effect of anti-miR204 on SGNs in vivo. METHODS: Our recent in vitro work suggested that anti-miR204 could be a potential therapeutic strategy in SNHL via rescue cochlear SGNs. In order to further our knowledge of miR204 on SGNs in vivo, we made a kanamycin ototoxicity model and then virus containing the anti-miR204 gene (AAV1-anti-miR204) was microinjected into the cochlear of the model to monitor the effect. RESULTS: The SGNs were rescued by anti-miR204 in the kanamycin ototoxicity mouse group compared to the sham group. Moreover, expression of TMPRSS3 in SGNs was saved by anti-miR204 treatment. CONCLUSION: Anti-miR204 might be an alternate way to alleviate the degeneration of cochlear SGNs of kanamycin ototoxicity mice.

15.
Genet Mol Res ; 14(4): 15779-82, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26634545

ABSTRACT

This study aimed to identify the disease-causing mutation in the ectodysplasin A (EDA) gene in a Chinese family affected by X-linked hypohidrotic ectodermal dysplasia (XLHED). A family clinically diagnosed with XLHED was investigated. For mutation analysis, the coding region of EDA of 2 patients and 7 unaffected members of the family was sequenced. The detected mutation in EDA was investigated in 120 normal controls. A missense mutation (c.878T>G) in EDA was detected in 2 patients and 3 female carriers, but not in 4 unaffected members of the family. The mutation was not found in the 120 healthy controls and has not been reported previously. Our findings indicate that a novel mutation (c.878T>G) of EDA is associated with XLHED and adds to the repertoire of EDA mutations.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/genetics , Mutation , Adult , Alleles , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , DNA Mutational Analysis , Ectodermal Dysplasia 1, Anhidrotic/diagnosis , Ectodysplasins/chemistry , Female , Humans , Male , Pedigree , Phenotype , Young Adult
16.
Genet Mol Res ; 14(4): 12049-61, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26505352

ABSTRACT

APETALA2 plays critical roles in establishing meristem and organ identity during plant floral development. In this study, we obtained a CeAP2-like gene by using the mRNA differential display technique to analyze the wild type and a multitepal mutant of the orchid Cymbidium ensifolium. The full-length cDNA encoding the CeAP2-like transcription factor shows significant similarity to the cDNA of AP2 from Erycina pusilla and contains nucleotides complementary to miR172. Using a transient gene expression system of Arabidopsis protoplasts, we found that the accumulation of CeAP2-like protein and transcripts was negatively regulated by miR172, indicating this gene as a putative target of miR172. Northern blotting revealed that CeAP2-like is dominantly expressed in the sepals and petals of the wild-type flower, and shows low expression in the gynostemium. In contrast, the accumulation of CeAP2-like transcripts decreased significantly, especially in the central part of the mutant flower, corresponding to its abnormal petals and the absence of the gynostemium. Furthermore, we found an antagonistic expression pattern between CeAP2-like and AGAMOUS in the wild type, representing A- and C-class genes that specify floral organ fate. However, this antagonistic distribution was modified in the multitepal mutant, and both genes showed lower expression than that in the wild type. This result suggested that the balance between CeAP2-like and AGAMOUS activity was important for the regulation of floral patterning in C. ensifolium. This study represents the first report on a class A gene and its regulatory role for floral development in the orchid C. ensifolium.


Subject(s)
Flowers/genetics , MicroRNAs/genetics , Orchidaceae/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Orchidaceae/growth & development , Plant Proteins/metabolism , Transcription Factors/metabolism
17.
Genet Mol Res ; 14(3): 9722-9, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26345904

ABSTRACT

Simple sequence repeat (SSR) and inter-simple sequence repeat (ISSR) markers were used to evaluate genetic diversity among 22 sweet kernel apricot accessions and 12 cultivars in China to provide information on how to improve the utilization of kernel apricot germplasms. The results showed that 10 pairs of SSR primers screened from 40 primer pairs amplified 43 allelic variants, all of which were polymorphic (100%), and 9 ISSR primers selected from 100 primers amplified 67 allelic variants with 50 polymorphic bands (74.63%). There was a relatively distant genetic relationship between the 34 samples, where their genetic similarity coefficient was between 0.62 and 0.99. The UPGMA dendrogram constructed using combined data of the two marker systems separated the genotypes into three main clusters.


Subject(s)
Genetic Variation , Microsatellite Repeats , Prunus armeniaca/classification , Prunus armeniaca/genetics , Genetic Markers , Genotype , Phylogeny , Polymorphism, Genetic
18.
Genet Mol Res ; 14(3): 7696-703, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26214450

ABSTRACT

We aimed to investigate the influence of lentiviral-mediated Bcl-2 overexpression in cerebral tissues of rats with acute cerebral infarction. Forty-five rats were randomly divided into sham, model, and treatment groups. The sham and model groups were administered a control lentiviral vector via the intracranial arteries 10 days before surgery, while the treatment group received lentivirus encoding a Bcl-2 overexpression vector. We induced cerebral artery infarction using a suture-occlusion method and analyzed the cerebral expression levels of apoptosis-related genes (caspase-3, Bax), total cerebral apoptosis, range of cerebral tissue infarction, and changes in nerve cell function after 72 h. The Bcl-2-encoding lentivirus was well expressed in rat cerebral tissues. The treatment group had significantly higher expression levels of Bcl-2 than the other two groups. After cerebral infarction, the model group had significantly increased expression levels of caspase-3 and Bax protein in cerebral tissues than the sham (P < 0.05). Expression of these apoptosis-related proteins in the treatment group was obviously lower than that in the model group (P < 0.05), but significantly higher than in the sham group (P < 0.05). Compared to sham, neuronal apoptosis levels and infarction range of cerebral tissues was increased in the model and treatment groups; however, these values in the treatment group were significantly lower than that in the model group (P < 0.05). Importantly, the treatment group had significantly decreased neurological impairment scores (P < 0.05). In conclusion, Bcl-2 over-expression can decrease neuronal apoptosis in rat cerebral tissue, and thus is neuroprotective after cerebral ischemia.


Subject(s)
Cerebral Infarction/metabolism , Cerebral Infarction/pathology , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Acute Disease , Animals , Apoptosis , Brain/metabolism , Brain/pathology , Caspase 3/metabolism , Cerebral Infarction/physiopathology , Neurons/pathology , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
19.
Genet Mol Res ; 14(2): 6048-58, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26125805

ABSTRACT

The bactericidal/permeability-increasing protein (BPI) gene has been identified as a candidate gene for disease-resistance breeding. We evaluated whether polymorphisms in exons 4 and 10 of the BPI gene are associated with immune indices [interleukin-2 (IL-2), IL-4, IL-6, interferon-b (IFN-b), IL-10, and IL-12]. In this study, we identified one mutation (C522T) in the BPI exon 4 site and two mutations (A1060G and T1151G) in the BPI exon 10 site. Correlation analysis revealed that in the Sutai pig population, the effect of genotypes at the BPI exon 4 site on the level of IL-6 was significant (P < 0.05), with an effective genotype of CD; moreover, the effect of genotypes at the BPI exon 10 site on the level of IL-12 was significant (P < 0.05), and the effective genotype was AB. The optimal combined genotype was CD-AB, which was more effective regarding the IL-6 and IL-12 levels compared to the other combined genotypes (P < 0.05). These results indicate that single nucleotide polymorphisms and the combined genotypes of BPI exons 4 and 10 affect immune indices in Sutai pigs. Therefore, these genotypes should be further examined as effective markers for disease-resistant breeding of pigs.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Blood Proteins/genetics , Interleukin-2/metabolism , Interleukin-6/metabolism , Polymorphism, Single Nucleotide , Swine/immunology , Animals , Disease Resistance , Exons , Polymorphism, Restriction Fragment Length , Polymorphism, Single-Stranded Conformational , Selective Breeding , Swine/genetics
20.
Genet Mol Res ; 14(1): 1111-23, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25730051

ABSTRACT

The super antibiotic bactericidal/permeability-increasing (BPI) protein is a member of a new generation of proteins that have been implicated as endotoxin-neutralizing agents. In this study, recombinant porcine BPI protein was obtained by generating porcine BPI encoding prokaryotic, eukaryotic, and yeast expression vectors. Recombinant protein expression was detected in yeast GS115, Escherichia coli, and 293-6E cells by gel electrophoresis and Western blotting. Escherichia coli F18 is the primary Gram-negative bacteria in the gut and the main pathogen leading to diarrhea and edema dis-ease in weaning piglets. Therefore, E. coli F18-resistant and -sensitive Sutai piglets were used to test differential expression of BPI protein by Western blotting and to investigate the potential correlation between BPI protein expression and E. coli F18-susceptibility. Recombinant porcine BPI protein expression was not detected in the prokaryotic and yeast expression systems; however, soluble protein was detected in the eukaryotic expression system. These data indicate the strong bacterio-static action of the BPI protein and confirm the feasibility of obtaining large amounts of recombinant porcine BPI recombinant protein using this eukaryotic expression system. In addition, the BPI protein expres-sion levels in the E. coli F18-resistant group were significantly higher than those in the sensitive group, indicating that high BPI protein ex-pression is associated with resistance to E. coli F18. Our findings pro-vide a basis for further investigations into the development of a drug designed to confer resistance to E. coli F18 in weaning piglets.


Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Blood Proteins/biosynthesis , Disease Resistance/genetics , Escherichia coli Infections/genetics , Escherichia coli/genetics , Animals , Antimicrobial Cationic Peptides/genetics , Blood Proteins/genetics , Disease Susceptibility/microbiology , Disease Susceptibility/veterinary , Endotoxins/genetics , Endotoxins/metabolism , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Infections/veterinary , Genetic Vectors , Genotype , Swine , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL